Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 March 2020 | Story Thabo Kessah | Photo Thabo Kessah
Japan UFS Afromontane Research Unit research collaboration
Dr Melissa Hansen (left) with ARU guest researchers. They are, from the left: Gema Carlota Cubelos Perez, Emilie Jones, Ven Paolo Valenzuela, Kanako Matsuyama (International Christian University), and Dr Kudo Shogo.

Research ties between the University of the Free State, the University of Tokyo, and the International Christian University strengthened when the Japanese scholars visited the Afromontane Research Unit (ARU) on the Qwaqwa Campus. 

“The visiting delegation is part of the larger research group on sustainability studies that has been sharing research expertise with the Afromontane Research Unit’s researchers over the past three years,” said Dr Kudo Shogo, Assistant Professor from the University of Tokyo’s Graduate Programme in Sustainability Science – Global Leadership Initiative (GPSS-GLI).

Entrepreneurship in Qwaqwa
“Our focus this time is on entrepreneurs who have had exposure to megacities such as Johannesburg and Cape Town, and who are finding themselves back in places like Qwaqwa. We have discovered that they actually find Qwaqwa more resourceful than when they left. Two to three years of unstable living in the cities gave them a fresh view to see the many opportunities in Qwaqwa and they then start their businesses. Talking to the Qwaqwa entrepreneurs has been a great learning experience for all of us,” he added.

The visiting scholars conducted interviews with 10 local entrepreneurs to get a sense of how they use entrepreneurship for sustainability purposes.

“We are pleased by the local people’s understanding that local problems require local solutions. I would really like to contribute to these people’s understanding of how these solutions fit the problems better than solutions that come from outside. We have quite a number of voices talking about empowering Qwaqwa, with the emphasis on creating jobs for Qwaqwa, solving the problems that Qwaqwa is facing. I have found education to be a unifying factor through tutoring, after-school classes, mentorship, and the personal imperative of sharing,” said Emilie Jones, originally from the United States of America and now studying for a master’s degree in Sustainability Science focusing on water supply and resources.

Education and arts empower communities
“Most of the entrepreneurs we spoke to have experience of the big cities. For them, Qwaqwa is very close to the heart and is home. There are challenges, but they are doing their best to empower their community with ideas and skills from the big cities. They provide services such as education and arts to empower the community to come up with a local identity,” said a PhD candidate, Ven Paolo Valenzuela from the Philippines. 

“I was impressed with the people who realise the opportunities to identify problems and even come up with solutions themselves. A lot of communities can learn from this,” said Gema Carlota Cubelos Perez, a PhD candidate originally from Spain.

Their host, Dr Melissa Hansen, Lecturer from the Department of Geography, said the visit was part of the bigger study on migration and sustainable development. “This was a Global Field Exercise (GFE) for teaching research methods in the field. We found that Qwaqwa is overflowing with potential for entrepreneurship in a wide variety of fields and that there is a strong, vibrant network of young individuals brimming with talent. We are learning from each other, as Akita City in Japan and Qwaqwa are similar in more ways than one,” she said.

One of the entrepreneurs, Refiloe Seekane, is a self-taught fashion designer, choreographer, and event coordinator. “The interview has actually made me realise the gaps we have for business opportunities in Qwaqwa and the importance of implementing some of the projects I have been planning for years,” said Seekane, a second-year Education student and CEO of Evomind.


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept