Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Thabo Kessah | Photo Tsepo Moeketsi
Dr Ocaya
Dr Richard Ocaya’s research addresses the skills development and transfer millennium goal of many governments globally.

With the Fourth Industrial Revolution becoming a reality, Dr Richard Ocaya’s research is receptive to the fact that Africa and the world need to re-imagine their research. His research focuses on electronic instrumentation design for scientific measurements, computational physics on atomic nano-atomic structures, and semiconducting organic compounds materials built on silicon to realise Schottky devices.

Software developer 
“I develop most of the instrumentation that I apply in my research – both software and hardware,” said Dr Ocaya, a Physics Lecturer and Programme Director: Physics and Chemistry on the UFS Qwaqwa Campus.

“I am active in scientific computing through the computing cluster and software development, mathematical physics for material science modelling, and embedded instrumentation design using microprocessors. I also have deep interest in radio and data telemetry, in which I hold a South African patent issued in 2013. My present international collaborations are with like-minded researchers in similar fields in Saudi Arabia, Turkey, Japan, Egypt, South Korea, and the United States,” he added.

How does his research talk to the real world?
“The driving principle of all areas of my research has always been to deploy cutting-edge research to actual, real-world applications for the immediate betterment of Africans. The areas of my research align closely with the millennium goals of many governments globally, including the Republic of South Africa. These goals pertain to skills development and transfer that position us to better address the challenges of energy, water, and other priorities.”

Dr Ocaya is currently co-promoting a PhD student, having previously supervised one PhD, two MSc, and more than twenty honours students. He is a self-taught electronics and computer programmer, whose curiosity led him to question ‘the voices and music coming from a box; a radio’. “In my quest to satisfy my curiosity, I collected many discarded devices, took them apart, and tried so many circuits, only to have them fail because the theory was lacking. After thousands of failed projects and with me barely thirteen and in lower secondary school, my first ever project actually worked,” he said.

NRF-rating
He is the author of the book Introduction to Control Systems Analysis using Point Symmetries: An application of Lie Symmetries, which is available in all major bookstores such as Amazon, in both print and e-book format. He is a C3 NRF-rated researcher whose work makes a pioneering contribution to the new and growing field of phononics, an independent field of the now established photonics.

“This field will someday lead to improved energy-storage devices and faster processors due to more efficient heat removal from nanodevices,” he concludes.


News Archive

Tiny microbes may solve large problems of water contamination, says Prof Esta van Heerden
2014-12-08

Small solutions for big problems

According to Prof Esta van Heerden, professor in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS), this might hold some truth in current terms of water treatment strategies for waste and industrial effluents.

“There is little doubt in popular literature that eminent water crises are looming, not only with respect to the supply, but quality and effectiveness of various treatment options as well. The UFS’s Department of Microbial, Biochemical and Food Biotechnology is partnering with the Technology Innovation Agency to evaluate water treatment technologies that are applied worldwide and to extend these new or adapted options to innovative and interested clients in South Africa,” says Prof Van Heerden.

“The research focuses on using extreme microbes to tackle big contaminations and the results are amazing,” says Prof Van Heerden.

These microbes are fast becoming the stars on sites and developing these exciting systems allows for greener treatment options. It is fascinating that they can deal with metals, including chromium and uranium, cyanide, petroleum and diesel.

Of utmost importance is the development of a treatment for acid mine drainage.

“Interests have been overwhelming and thus far partners have allowed pilot scale development on their sites with very promising results. These initiatives are driven by responsible partners who strive to be innovative and develop sustainable technologies for good quality water that can be released in the environment,” Prof Van Heerden says.

The research group has set up a pipeline to serve the water communities’ needs. It provides an accessible toolkit for water analysis. A tailor-made treatment option is also developed and showcased in the laboratories. It has the added benefit that Geosyntec Consultants, USA, will ensure faster roll-out by sharing their vast experience on any related aspects.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept