Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Thabo Kessah | Photo Tsepo Moeketsi
Dr Ocaya
Dr Richard Ocaya’s research addresses the skills development and transfer millennium goal of many governments globally.

With the Fourth Industrial Revolution becoming a reality, Dr Richard Ocaya’s research is receptive to the fact that Africa and the world need to re-imagine their research. His research focuses on electronic instrumentation design for scientific measurements, computational physics on atomic nano-atomic structures, and semiconducting organic compounds materials built on silicon to realise Schottky devices.

Software developer 
“I develop most of the instrumentation that I apply in my research – both software and hardware,” said Dr Ocaya, a Physics Lecturer and Programme Director: Physics and Chemistry on the UFS Qwaqwa Campus.

“I am active in scientific computing through the computing cluster and software development, mathematical physics for material science modelling, and embedded instrumentation design using microprocessors. I also have deep interest in radio and data telemetry, in which I hold a South African patent issued in 2013. My present international collaborations are with like-minded researchers in similar fields in Saudi Arabia, Turkey, Japan, Egypt, South Korea, and the United States,” he added.

How does his research talk to the real world?
“The driving principle of all areas of my research has always been to deploy cutting-edge research to actual, real-world applications for the immediate betterment of Africans. The areas of my research align closely with the millennium goals of many governments globally, including the Republic of South Africa. These goals pertain to skills development and transfer that position us to better address the challenges of energy, water, and other priorities.”

Dr Ocaya is currently co-promoting a PhD student, having previously supervised one PhD, two MSc, and more than twenty honours students. He is a self-taught electronics and computer programmer, whose curiosity led him to question ‘the voices and music coming from a box; a radio’. “In my quest to satisfy my curiosity, I collected many discarded devices, took them apart, and tried so many circuits, only to have them fail because the theory was lacking. After thousands of failed projects and with me barely thirteen and in lower secondary school, my first ever project actually worked,” he said.

NRF-rating
He is the author of the book Introduction to Control Systems Analysis using Point Symmetries: An application of Lie Symmetries, which is available in all major bookstores such as Amazon, in both print and e-book format. He is a C3 NRF-rated researcher whose work makes a pioneering contribution to the new and growing field of phononics, an independent field of the now established photonics.

“This field will someday lead to improved energy-storage devices and faster processors due to more efficient heat removal from nanodevices,” he concludes.


News Archive

What did they learn at Stanford University?
2015-11-04

    

Members of the cohort with the
Vice-Chancellor and Rector of the UFS,
Prof Jonathan Jansen

Every year, since 2012, six second-year Kovsies are selected to take part in the elite Stanford Sophomore College Programme at the prestigious Stanford University in the United States. The University of the Free State and Oxford University are the only non-Stanford members of this exclusive course.

From 31 August to 15 September 2015, Farzaana Adam, Cornel Vermaak, Precious Mokwala, Tristan Van Der Spuy, Anje Venter, and Naushad Mayat undertook a three-week long academic exploration of multidisciplinary topics. These students attended seminars aligned with their respective fields of study from which they accumulated a wealth of knowledge.

This year’s cohort reflects on what they learned at Stanford University:

The significance of analyzing technology

One of the key points gathered by Farzaana Adam from the seminar, ‘Great Ideas in Computer Science’, was the necessity not to approach technology at face value. “Computer science goes beyond the technological products and social networks. By analysing the concepts underlying these technologies, many discoveries which have benefitted many fields of study have been made possible.”

Critical thinking in Arts and Science


“By combining different fields of study, one can obtain a greater perspective on the relevant fields,” said Cornel Vermaak, about what he garnered from a seminar titled ‘An Exploration of Art Materials: An intersection between the Arts and Science’. “This greater perspective enables one to evaluate problems critically,” he added.

Visual media substitutes oral narratives

“We were also taught different ways in which to interpret images, and how images influence society. Photography is a way to tell a story without actually having to say anything,” reflected Precious Mokwala, on ‘Photography: truth or fiction’

A lesson in business economics


Tristan Van Der Spuy received pointers pertaining to the stock exchange market    in ‘A Random Walk Down Wall Street’. “We looked at stock markets, and what influenced the stock prices of multiple companies, taking note of what should be looked at when investing in a company.”

Race relations and representation

‘The New Millenium Mix: Crossings between Race and Culture’ exposed Anje Venter to a global perspective on identity. “We explored the new generation of people that have mixed races and cultures, and how they are depicted in media and art.  We analysed the discrepancies and stereotypes of these depictions through film, novel, and short story studies, as well as through field trips to museums and art exhibitions.”

Overcoming the HIV/AIDS endemic


Naushad Mayat realised that “more teamwork and transparency between governments, chemists, social workers, and clinicians will be required for us to stem the flow [of HIV/AIDS],” in view of what he learned in a seminar on ‘HIV/AIDS: A Response to the AIDS Epidemic in the Bay Area’. “It is a daunting task. For the current generation of youth to tackle this epidemic now, we must stand together and be counted,” he added.



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept