Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 March 2020 | Story Thabo Kessah | Photo Tsepo Moeketsi
Dr Ocaya
Dr Richard Ocaya’s research addresses the skills development and transfer millennium goal of many governments globally.

With the Fourth Industrial Revolution becoming a reality, Dr Richard Ocaya’s research is receptive to the fact that Africa and the world need to re-imagine their research. His research focuses on electronic instrumentation design for scientific measurements, computational physics on atomic nano-atomic structures, and semiconducting organic compounds materials built on silicon to realise Schottky devices.

Software developer 
“I develop most of the instrumentation that I apply in my research – both software and hardware,” said Dr Ocaya, a Physics Lecturer and Programme Director: Physics and Chemistry on the UFS Qwaqwa Campus.

“I am active in scientific computing through the computing cluster and software development, mathematical physics for material science modelling, and embedded instrumentation design using microprocessors. I also have deep interest in radio and data telemetry, in which I hold a South African patent issued in 2013. My present international collaborations are with like-minded researchers in similar fields in Saudi Arabia, Turkey, Japan, Egypt, South Korea, and the United States,” he added.

How does his research talk to the real world?
“The driving principle of all areas of my research has always been to deploy cutting-edge research to actual, real-world applications for the immediate betterment of Africans. The areas of my research align closely with the millennium goals of many governments globally, including the Republic of South Africa. These goals pertain to skills development and transfer that position us to better address the challenges of energy, water, and other priorities.”

Dr Ocaya is currently co-promoting a PhD student, having previously supervised one PhD, two MSc, and more than twenty honours students. He is a self-taught electronics and computer programmer, whose curiosity led him to question ‘the voices and music coming from a box; a radio’. “In my quest to satisfy my curiosity, I collected many discarded devices, took them apart, and tried so many circuits, only to have them fail because the theory was lacking. After thousands of failed projects and with me barely thirteen and in lower secondary school, my first ever project actually worked,” he said.

NRF-rating
He is the author of the book Introduction to Control Systems Analysis using Point Symmetries: An application of Lie Symmetries, which is available in all major bookstores such as Amazon, in both print and e-book format. He is a C3 NRF-rated researcher whose work makes a pioneering contribution to the new and growing field of phononics, an independent field of the now established photonics.

“This field will someday lead to improved energy-storage devices and faster processors due to more efficient heat removal from nanodevices,” he concludes.


News Archive

Science and goodwill meet drought-stricken communities
2016-03-02

Description: Disinfecting tankered water  Tags: Disinfecting water

“Everyone should contribute to the delivery of clean water to every individual,” says UFS researcher.

The drought in South Africa has impacted the country in many ways. Apart from its economic and environmental implications, the drought also has social implications, leaving some communities without water.

Since 21 January 2016, the Department of Water and Sanitation (DWS) is working together with the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State. Dr Mariana Erasmus, post-doctoral fellow in the department, was appointed to lead a project for disinfecting tankered water supplied by the DWS to communities without water in the Qwaqwa area - which falls under the Maluti-a-Phufung Local Municipality.

She is working on the project with Robbie Erasmus from BioSense Solutions and Martin Bambo from DWS. A total of 53 trucks, 91 tanks, and 420 500 litres of water was disinfected so far, using sodium hypochlorite. “This is standard practice around the world,” Dr Erasmus said.

The work done by the UFS and DWS, who is monitoring the water quality as well as the process of water delivery, is very important. Disinfecting the trucks used to deliver water to drought-stricken communities decreases the formation of biofilm inside the tanks. “The biofilm could contain harmful bacteria such as E-coli. It is important to note that this is mostly the result of secondary pollution, since the water quality from the source where it was taken from, proved to be good. Drinking water with this harmful bacteria that has not been properly managed, can lead to health issues in humans when consumed,” Dr Erasmus said.

The Department of Microbial, Biochemical, and Food Biotechnology, interacting with the DWS on several water-related issues, volunteered to get involved in the project. They strongly believe that everyone should contribute to the delivery of clean water to every individual.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept