Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 March 2020 | Story Rulanzen Martin | Photo Victor Sguassero (kykNET)
Chris Vorster
Chris was on stage in 'Die Hart Verklap' at the Toyota US Woordfees in Stellenbosch recently.

“Difficult and very strange,” is how Chris Vorster, veteran actor and Drama lecturer at the University of the Free State (UFS) describes his role as Bas Koorts in the supernatural thriller Die Spreeus

For Chris, the biggest challenge during the filming of Die Spreeus was to work in front of a green screen. “You never see the monsters and things attacking you, it is only added later on during the editing process,” he said. Therefore, he and his co-actors were expected to use their own imagination “to be frightened, and to duck and dive from something that does not exist.” 

This Afrikaans thriller series has recently been nominated in five categories of the South African Film and Television Awards, including Best Television Drama, Best Cinematography, and Original Sound and Sound Editing. 

Chris was also nominated for a Fiësta award in 2019 for his one-man performance in the theatre production, Die Hart verklap. “It is fantastic to still be recognised for my work,” he said, “but I also have to give recognition to Dion van Niekerk, because without a good director, any actor will be lost.” Van Niekerk also lectures Drama at the UFS.

Being a lecturer broadens his knowledge 

Chris joined the UFS Department of Drama and Theatre Arts in 2015 as lecturer in the programme for Film en Visual Media. “Everything I learn in the industry I apply as lecturer, and research and teaching feed more knowledge on acting, directing, and especially writing,” he said. After five years, being involved with the UFS Department of Drama is still exciting to him. “This is where both lecturers and students get encouraged to do more than just breathing.” 

With his busy schedule of teaching and acting, it remains important to him that South Africans are still able to tell stories – “in any language”. He considers it a privilege for anyone to work in their mother tongue. This is also why the symbiosis between his work as actor and lecturer is so appealing.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept