Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 March 2020 | Story Rulanzen Martin | Photo Victor Sguassero (kykNET)
Chris Vorster
Chris was on stage in 'Die Hart Verklap' at the Toyota US Woordfees in Stellenbosch recently.

“Difficult and very strange,” is how Chris Vorster, veteran actor and Drama lecturer at the University of the Free State (UFS) describes his role as Bas Koorts in the supernatural thriller Die Spreeus

For Chris, the biggest challenge during the filming of Die Spreeus was to work in front of a green screen. “You never see the monsters and things attacking you, it is only added later on during the editing process,” he said. Therefore, he and his co-actors were expected to use their own imagination “to be frightened, and to duck and dive from something that does not exist.” 

This Afrikaans thriller series has recently been nominated in five categories of the South African Film and Television Awards, including Best Television Drama, Best Cinematography, and Original Sound and Sound Editing. 

Chris was also nominated for a Fiësta award in 2019 for his one-man performance in the theatre production, Die Hart verklap. “It is fantastic to still be recognised for my work,” he said, “but I also have to give recognition to Dion van Niekerk, because without a good director, any actor will be lost.” Van Niekerk also lectures Drama at the UFS.

Being a lecturer broadens his knowledge 

Chris joined the UFS Department of Drama and Theatre Arts in 2015 as lecturer in the programme for Film en Visual Media. “Everything I learn in the industry I apply as lecturer, and research and teaching feed more knowledge on acting, directing, and especially writing,” he said. After five years, being involved with the UFS Department of Drama is still exciting to him. “This is where both lecturers and students get encouraged to do more than just breathing.” 

With his busy schedule of teaching and acting, it remains important to him that South Africans are still able to tell stories – “in any language”. He considers it a privilege for anyone to work in their mother tongue. This is also why the symbiosis between his work as actor and lecturer is so appealing.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept