Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 March 2020 | Story Rulanzen Martin | Photo Victor Sguassero (kykNET)
Chris Vorster
Chris was on stage in 'Die Hart Verklap' at the Toyota US Woordfees in Stellenbosch recently.

“Difficult and very strange,” is how Chris Vorster, veteran actor and Drama lecturer at the University of the Free State (UFS) describes his role as Bas Koorts in the supernatural thriller Die Spreeus

For Chris, the biggest challenge during the filming of Die Spreeus was to work in front of a green screen. “You never see the monsters and things attacking you, it is only added later on during the editing process,” he said. Therefore, he and his co-actors were expected to use their own imagination “to be frightened, and to duck and dive from something that does not exist.” 

This Afrikaans thriller series has recently been nominated in five categories of the South African Film and Television Awards, including Best Television Drama, Best Cinematography, and Original Sound and Sound Editing. 

Chris was also nominated for a Fiësta award in 2019 for his one-man performance in the theatre production, Die Hart verklap. “It is fantastic to still be recognised for my work,” he said, “but I also have to give recognition to Dion van Niekerk, because without a good director, any actor will be lost.” Van Niekerk also lectures Drama at the UFS.

Being a lecturer broadens his knowledge 

Chris joined the UFS Department of Drama and Theatre Arts in 2015 as lecturer in the programme for Film en Visual Media. “Everything I learn in the industry I apply as lecturer, and research and teaching feed more knowledge on acting, directing, and especially writing,” he said. After five years, being involved with the UFS Department of Drama is still exciting to him. “This is where both lecturers and students get encouraged to do more than just breathing.” 

With his busy schedule of teaching and acting, it remains important to him that South Africans are still able to tell stories – “in any language”. He considers it a privilege for anyone to work in their mother tongue. This is also why the symbiosis between his work as actor and lecturer is so appealing.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept