Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 March 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Team from the UFS Microbiology department
From the Department of Microbiology and Biochemistry, were from the left, front: Dr Mariana Erasmus, Prof Martie Smit, Samantha McCarlie; back: Dr Carmien Tolmie; Samantha McCarlie, Prof Dirk Opperman, and Prof Robert Bragg. They believe publishing in high-impact factor journals reflects the quality of research delivered by the department.

Researchers in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS) published their work in four impact factor eleven journals in 2019/2020, and a fifth was accepted for publication in a journal with impact factor twelve in 2020. 

Two articles were published in Nature Communications, one in Drug Resistance Updates and one in Natural Product Reports. A fifth article is already available as an accepted article at Angewandte Chemie. Researchers in the department work on very diverse topics, as reflected in the titles of these articles: ‘A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2’; ‘Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds’; ‘The genome of a subterrestrial nematode reveals adaptations to heat’; ‘Molecular basis of bacterial disinfectant resistance’; and ‘CYP505E3 – a novel self‐sufficient ω‐7 in‐chain hydroxylase’.

Publishing in journals with a high impact factor is quite an achievement. Publishing in a journal with an impact factor of 3 is considered good and in most fields of study, publishing in journals with an impact factor of 10 or more is regarded as excellent. Impact factors are used to measure the importance of a journal by counting the number of times articles were cited in a certain time period. 

According to Prof Martie Smit, Head of the department, this is a reflection of the quality of research delivered by the department. “It is difficult and takes a lot of time and resources to publish in such high-impact journals.”

Contributing to their success in the department, is the work of their collaborators as well as the quality international postdoctoral researchers the department manages to attract with their emphasis on quality research.

Another highlight in the publication of these articles was that members of the department were corresponding authors of four of the five articles – meaning that the research was conducted in and driven from their laboratories, with UFS researchers taking primary responsibility for the preparation of the manuscripts and communicating with the editors of the journals.

Impacting society

Besides publishing in journals with high impact factors, these researchers are also making a difference to society. Prof Robert Bragg contributed to the study focusing on quality disinfectants. 

We are all aware of the danger of developing resistance to antibiotics. According to Prof Bragg, it is estimated that by 2050, 25 million people could be dying from antibiotic resistance-related bacterial infections per year. He says one of the best options to control diseases – not only bacterial diseases, but also viral diseases such as the Covid-19 outbreak – is good biosecurity and the use of good-quality disinfectants.

Researchers working on this study are trying to understand the development of resistance in bacteria to disinfectants. “This research group is currently investigating the ways in which bacteria become resistant to different high-quality disinfectants. The aim of this work is to discover new methods of resistance and then try to prevent bacteria from becoming resistant to commonly used disinfectants. One of the first aspects that needs investigation is to understand the methods of transfer of genetic information between bacteria. This work formed the basis of the review article written with master’s student Samantha McCarlie on transfer of genes that could code for disinfectant resistance in bacteria,” says Prof Bragg.

Studies about a nematode species discovered 1,3 km deep in a gold mine in Welkom and its ability to survive in extreme environments, made headlines about nine years ago. More extensive research has been performed on deep-space exploration of nematodes surviving extreme environments and were published in Nature Communications. Dr Mariana Erasmus, Assistant Director in the department and Technology Innovation Agency/UFS Saense Platform manager, says the study published in 2019 reveals these nematodes’ adaptation to heat and heat tolerance in an unusual ecosystem isolated from the surface biosphere. More studies on this can help humans learn how to adapt to a warming climate. 

TIA is an agency of the Department of Science and Innovation.

Three of the articles are from the Biocatalysis and Structural Biology group of Prof Dirk Opperman, Prof Martie Smit, and Dr Carmien Tolmie. Biocatalysis is a form of green chemistry that aims to produce chemicals in an environmentally friendly and sustainable manner. The research of the group focuses on using enzymes (proteins performing specialised chemical reactions) to insert an oxygen atom at a specific position in a starting material. Such reactions are difficult to perform using purely organic chemistry. 

The end products are value-added compounds of interest to, among others, the flavour and fragrance industry, which place a high premium on natural products. The work on the novel in‐chain hydroxylase was also patented internationally, because it can be used for the synthesis of a valuable flavour compound.
 
More to come

Besides the commitment of the team in Microbiology, it took multiple institutions, dedicated postdoctoral students, as well as time and money to publish this number of articles in high-impact journals in just over a year. With its 100-plus researchers varying from student researchers to NRF-rated scientists, everyone in the Department of Microbial, Biochemical and Food Biotechnology strives to produce high-quality research. 

And they promise, there is more to come. Watch this space …

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept