Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 March 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Team from the UFS Microbiology department
From the Department of Microbiology and Biochemistry, were from the left, front: Dr Mariana Erasmus, Prof Martie Smit, Samantha McCarlie; back: Dr Carmien Tolmie; Samantha McCarlie, Prof Dirk Opperman, and Prof Robert Bragg. They believe publishing in high-impact factor journals reflects the quality of research delivered by the department.

Researchers in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS) published their work in four impact factor eleven journals in 2019/2020, and a fifth was accepted for publication in a journal with impact factor twelve in 2020. 

Two articles were published in Nature Communications, one in Drug Resistance Updates and one in Natural Product Reports. A fifth article is already available as an accepted article at Angewandte Chemie. Researchers in the department work on very diverse topics, as reflected in the titles of these articles: ‘A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2’; ‘Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds’; ‘The genome of a subterrestrial nematode reveals adaptations to heat’; ‘Molecular basis of bacterial disinfectant resistance’; and ‘CYP505E3 – a novel self‐sufficient ω‐7 in‐chain hydroxylase’.

Publishing in journals with a high impact factor is quite an achievement. Publishing in a journal with an impact factor of 3 is considered good and in most fields of study, publishing in journals with an impact factor of 10 or more is regarded as excellent. Impact factors are used to measure the importance of a journal by counting the number of times articles were cited in a certain time period. 

According to Prof Martie Smit, Head of the department, this is a reflection of the quality of research delivered by the department. “It is difficult and takes a lot of time and resources to publish in such high-impact journals.”

Contributing to their success in the department, is the work of their collaborators as well as the quality international postdoctoral researchers the department manages to attract with their emphasis on quality research.

Another highlight in the publication of these articles was that members of the department were corresponding authors of four of the five articles – meaning that the research was conducted in and driven from their laboratories, with UFS researchers taking primary responsibility for the preparation of the manuscripts and communicating with the editors of the journals.

Impacting society

Besides publishing in journals with high impact factors, these researchers are also making a difference to society. Prof Robert Bragg contributed to the study focusing on quality disinfectants. 

We are all aware of the danger of developing resistance to antibiotics. According to Prof Bragg, it is estimated that by 2050, 25 million people could be dying from antibiotic resistance-related bacterial infections per year. He says one of the best options to control diseases – not only bacterial diseases, but also viral diseases such as the Covid-19 outbreak – is good biosecurity and the use of good-quality disinfectants.

Researchers working on this study are trying to understand the development of resistance in bacteria to disinfectants. “This research group is currently investigating the ways in which bacteria become resistant to different high-quality disinfectants. The aim of this work is to discover new methods of resistance and then try to prevent bacteria from becoming resistant to commonly used disinfectants. One of the first aspects that needs investigation is to understand the methods of transfer of genetic information between bacteria. This work formed the basis of the review article written with master’s student Samantha McCarlie on transfer of genes that could code for disinfectant resistance in bacteria,” says Prof Bragg.

Studies about a nematode species discovered 1,3 km deep in a gold mine in Welkom and its ability to survive in extreme environments, made headlines about nine years ago. More extensive research has been performed on deep-space exploration of nematodes surviving extreme environments and were published in Nature Communications. Dr Mariana Erasmus, Assistant Director in the department and Technology Innovation Agency/UFS Saense Platform manager, says the study published in 2019 reveals these nematodes’ adaptation to heat and heat tolerance in an unusual ecosystem isolated from the surface biosphere. More studies on this can help humans learn how to adapt to a warming climate. 

TIA is an agency of the Department of Science and Innovation.

Three of the articles are from the Biocatalysis and Structural Biology group of Prof Dirk Opperman, Prof Martie Smit, and Dr Carmien Tolmie. Biocatalysis is a form of green chemistry that aims to produce chemicals in an environmentally friendly and sustainable manner. The research of the group focuses on using enzymes (proteins performing specialised chemical reactions) to insert an oxygen atom at a specific position in a starting material. Such reactions are difficult to perform using purely organic chemistry. 

The end products are value-added compounds of interest to, among others, the flavour and fragrance industry, which place a high premium on natural products. The work on the novel in‐chain hydroxylase was also patented internationally, because it can be used for the synthesis of a valuable flavour compound.
 
More to come

Besides the commitment of the team in Microbiology, it took multiple institutions, dedicated postdoctoral students, as well as time and money to publish this number of articles in high-impact journals in just over a year. With its 100-plus researchers varying from student researchers to NRF-rated scientists, everyone in the Department of Microbial, Biochemical and Food Biotechnology strives to produce high-quality research. 

And they promise, there is more to come. Watch this space …

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept