Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 March 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Team from the UFS Microbiology department
From the Department of Microbiology and Biochemistry, were from the left, front: Dr Mariana Erasmus, Prof Martie Smit, Samantha McCarlie; back: Dr Carmien Tolmie; Samantha McCarlie, Prof Dirk Opperman, and Prof Robert Bragg. They believe publishing in high-impact factor journals reflects the quality of research delivered by the department.

Researchers in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS) published their work in four impact factor eleven journals in 2019/2020, and a fifth was accepted for publication in a journal with impact factor twelve in 2020. 

Two articles were published in Nature Communications, one in Drug Resistance Updates and one in Natural Product Reports. A fifth article is already available as an accepted article at Angewandte Chemie. Researchers in the department work on very diverse topics, as reflected in the titles of these articles: ‘A chemo-enzymatic oxidation cascade to activate C–H bonds with in situ generated H2O2’; ‘Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds’; ‘The genome of a subterrestrial nematode reveals adaptations to heat’; ‘Molecular basis of bacterial disinfectant resistance’; and ‘CYP505E3 – a novel self‐sufficient ω‐7 in‐chain hydroxylase’.

Publishing in journals with a high impact factor is quite an achievement. Publishing in a journal with an impact factor of 3 is considered good and in most fields of study, publishing in journals with an impact factor of 10 or more is regarded as excellent. Impact factors are used to measure the importance of a journal by counting the number of times articles were cited in a certain time period. 

According to Prof Martie Smit, Head of the department, this is a reflection of the quality of research delivered by the department. “It is difficult and takes a lot of time and resources to publish in such high-impact journals.”

Contributing to their success in the department, is the work of their collaborators as well as the quality international postdoctoral researchers the department manages to attract with their emphasis on quality research.

Another highlight in the publication of these articles was that members of the department were corresponding authors of four of the five articles – meaning that the research was conducted in and driven from their laboratories, with UFS researchers taking primary responsibility for the preparation of the manuscripts and communicating with the editors of the journals.

Impacting society

Besides publishing in journals with high impact factors, these researchers are also making a difference to society. Prof Robert Bragg contributed to the study focusing on quality disinfectants. 

We are all aware of the danger of developing resistance to antibiotics. According to Prof Bragg, it is estimated that by 2050, 25 million people could be dying from antibiotic resistance-related bacterial infections per year. He says one of the best options to control diseases – not only bacterial diseases, but also viral diseases such as the Covid-19 outbreak – is good biosecurity and the use of good-quality disinfectants.

Researchers working on this study are trying to understand the development of resistance in bacteria to disinfectants. “This research group is currently investigating the ways in which bacteria become resistant to different high-quality disinfectants. The aim of this work is to discover new methods of resistance and then try to prevent bacteria from becoming resistant to commonly used disinfectants. One of the first aspects that needs investigation is to understand the methods of transfer of genetic information between bacteria. This work formed the basis of the review article written with master’s student Samantha McCarlie on transfer of genes that could code for disinfectant resistance in bacteria,” says Prof Bragg.

Studies about a nematode species discovered 1,3 km deep in a gold mine in Welkom and its ability to survive in extreme environments, made headlines about nine years ago. More extensive research has been performed on deep-space exploration of nematodes surviving extreme environments and were published in Nature Communications. Dr Mariana Erasmus, Assistant Director in the department and Technology Innovation Agency/UFS Saense Platform manager, says the study published in 2019 reveals these nematodes’ adaptation to heat and heat tolerance in an unusual ecosystem isolated from the surface biosphere. More studies on this can help humans learn how to adapt to a warming climate. 

TIA is an agency of the Department of Science and Innovation.

Three of the articles are from the Biocatalysis and Structural Biology group of Prof Dirk Opperman, Prof Martie Smit, and Dr Carmien Tolmie. Biocatalysis is a form of green chemistry that aims to produce chemicals in an environmentally friendly and sustainable manner. The research of the group focuses on using enzymes (proteins performing specialised chemical reactions) to insert an oxygen atom at a specific position in a starting material. Such reactions are difficult to perform using purely organic chemistry. 

The end products are value-added compounds of interest to, among others, the flavour and fragrance industry, which place a high premium on natural products. The work on the novel in‐chain hydroxylase was also patented internationally, because it can be used for the synthesis of a valuable flavour compound.
 
More to come

Besides the commitment of the team in Microbiology, it took multiple institutions, dedicated postdoctoral students, as well as time and money to publish this number of articles in high-impact journals in just over a year. With its 100-plus researchers varying from student researchers to NRF-rated scientists, everyone in the Department of Microbial, Biochemical and Food Biotechnology strives to produce high-quality research. 

And they promise, there is more to come. Watch this space …

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept