Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 March 2020 | Story Prof Francis Petersen | Photo Sonia Small
Prof Francis Petersen
Professor Francis Petersen is the Rector and Vice-Chancellor of the University of the Free State

The shortage of skills is a global phenomenon and employers are concerned about the need for skilled professionals to meet the demands of various sectors of their economies. This situation has reached worrying proportions in South Africa, where it has become apparent that there is a nonalignment between the skills graduates are equipped with and those that are required in the workforce. 
Moreover, the continuous contraction of the South African economy is further spurring the unemployment crisis: the weak economic performance is not sufficient to create jobs in line with the growth of the working-age population. It is also evident that skills shortages and a lack of social capital have become a systemic problem that prevents access to jobs. 

Preparing graduates for the world of work
Unemployment in South Africa is about 29%, according to Statistics South Africa’s latest Quarterly Labour Force Survey; the unemployment rate of people between the ages of 15 and 34 years is 56%. Earlier this month, President Cyril Ramaphosa announced in his State of the Nation address that the country is facing its highest unemployment rate since 2008. Referring to youth unemployment as a “crisis”, the president said about two-thirds of the 1.2-million young people entering the labour market each year remain outside employment, education, or training.

There is an argument that a university graduate should not necessarily be job-ready, but must have the ability to think, to adapt and to learn relatively quickly. Even with this expectation, it is critically important to understand the world of work and to have a relationship with the job market. This is not only important from a future employment perspective, but it will also bring the job market closer to the academic curriculum and the research agenda of the university. It goes a long way towards starting to co-create solutions and conceptualising futures that are more inclusive and sustainable.

UFS interventions to improve student success
The University of the Free State (UFS) has taken collaboration with the private sector, industry, and commerce very seriously — most of the academic departments have industrial or sector-specific advisory boards through which robust discussions are taking place concerning the curriculum, appropriate funding to students, interventions to improve student success, challenges of the job market, and which research projects are essential to tackle. Through these boards, a relationship between the university, industry, the private sector, and commerce is established. This is a good starting point not only to address employment, but also to provide a catalyst for optimising an ecosystem to address the country’s economic challenges.  

UFS has also established a Short Learning Programmes office, as we believe that training and retraining workers in an ever-changing job market is essential. 
Our proactiveness in creating platforms of engagement with companies about student recruitment — as well as motivating companies, donors, and funders to employ and fund our top graduates — is evident through the work of our Career Services office. Trends in job placement are identified to help us better understand which markets to tailor our programmes to, and to create corporate partnerships for job-training opportunities. Keeping our students informed about career opportunities and equipping them with the skills and grit to make them employable — whether it is to find employment or to start their own business, is the Career Services’ goal.

Developing an entrepreneurial mindset 
Entrepreneurship has a vital role in combating unemployment. Equipping students with an entrepreneurial mindset is a priority, and “entrepreneurial thinking” is one of the university’s key graduate attributes. 

UFS supports the notion that preparing young jobseekers for the ever-evolving world of work is an integral aspect of their learning at university. We offer a compulsory foundation module to expose all of our first-year students to aspects of entrepreneurship, which are also captured throughout the curriculum.  
The UFS Business School has developed initiatives and training programmes specifically aimed at entrepreneurial enterprises. Our Centre for Business Dynamics works with the business sector, helping companies to stay competitive by bridging the gap between existing skills and those required by each industry. Short courses in entrepreneurship are among the tools they use to achieve this. Practical impetus is provided to students with business ideas through our Student Business Incubator; initiatives such as Young Entrepreneurs and the local chapter of Google’s Startup Grind U further stimulate entrepreneurial thinking.

Solving the skills gap
At UFS, we have found that to help the country in solving the skills gap and allow higher education institutions to thrive, various factors, such as industry, region, and job role are important. It has become all too clear that it is not enough to have only technical knowledge — a combination of skills is required for most jobs as technology becomes an integral part of daily tasks in the workplace. Education efforts should focus on areas that set individuals apart from machines and technology. 

There is a need for graduates to evolve with career opportunities, as many employers consider critical and strategic thinking skills as fundamental in middle-management roles. Collaboration, negotiation, emotional intelligence, cognitive flexibility, and resilience are important abilities in the workplace.

With the right skills and networks, our graduates will be able to secure employment, have enterprising mindsets to support and sustain themselves, and contribute to the development of their communities. 

A strong focus on employability as part of the core business of a university and the ability to equip our graduates with the necessary skills will remain crucial factors in the years to come. Our relationship with industry, the private sector, and commerce is crucial to driving this.

This article was published in the Mail&Guardian newspaper on 6 March 2020


News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept