Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2020 | Story Leonie Bolleurs | Photo Supplied
Solar car Team
Excited about a first for the UFS, Team UFS is entering the 2020 Sasol Solar Challenge. From the left, front, are: Fouché Blignaut, Mechatronic Engineering; Nathan Bernstein, Agricultural Engineering; Lucas Erasmus, Physics; middle: Barend Crous, Manufacturing and Instrumentation; Hendrik van Heerden, Physics (team leader); Antonie Fourie, Physics; Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences (team director); Prof Koos Terblans, Head of the Department of Physics; Theo Gropp, Mechanical Engineering; back: Louis Lagrange, Head of the Department of Engineering; and Mark Jacson, Electronics.

An interdepartmental team from the University of the Free State (UFS) has announced that it will enter and participate in the 2020 Sasol Solar Challenge, scheduled to take place from 11 to 19 September this year. 

For the challenge, Team UFS will build a self-propelled manned vehicle that uses solar power systems to travel from point A to point B. The 14-member team of the UFS will travel on public roads from Pretoria to Cape Town via a predefined route over eight days. They will compete against more than 15 other teams, both local and international. The team that finishes with the greatest distance covered within the allotted time, will win the race. Teams will race every day between 07:30 and 17:00.

The four drivers to operate the vehicles will be selected from participating UFS departments in the coming months.

First solar car for the UFS
Dr Hendrik van Heerden from the Department of Physics has been planning the solar car project – Lengau (meaning Cheetah in Sesotho) – over the past year. He will start assembling the car in the next month together with colleagues and students from both the Departments of Physics and Engineering Sciences (EnSci).

Not only is this a dream come true, but it is also an opportunity for the UFS to show that they can do this. “We do not need the backing of a large and long-established engineering department to build a car like this, a young and vibrant team can do just as much!”, says Dr Van Heerden, who plans to complete the car within a few months, ready to be calibrated and tested later in June.

Capacity in green and sustainable engineering
“The ability of Team UFS to participate is possible due to recent research developments on photovoltaic technologies (solar cells) in the Department of Physics, a well-established leader in the field of surface and material sciences. The university also has established capacity in the fields of photoluminescence and nanomaterials (nanomaterials in energy storage). Additionally, with the establishment of EnSci, the university has expanded into this field, which will bring building capacity in the area of green and sustainable engineering to the project,” says Dr Van Heerden.

Promoting development into green technologies and 4IR
According to Dr Van Heerden, it is clear that the university wishes to become a strong role player in the development and utilisation of green energy, as can be seen in the implementation of relevant technologies on its various campuses. “Thus, for the UFS to be recognised in this research area, it is important to participate in related ‘green’ events where staff and students can build their capacity of practical knowledge by constructing participation equipment such as the solar car.”

He believes that this project has the potential to become a strong base for student training and capacity building in all technological fields, which can promote base development to 4IR.

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept