Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2020 | Story Leonie Bolleurs | Photo Supplied
Solar car Team
Excited about a first for the UFS, Team UFS is entering the 2020 Sasol Solar Challenge. From the left, front, are: Fouché Blignaut, Mechatronic Engineering; Nathan Bernstein, Agricultural Engineering; Lucas Erasmus, Physics; middle: Barend Crous, Manufacturing and Instrumentation; Hendrik van Heerden, Physics (team leader); Antonie Fourie, Physics; Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences (team director); Prof Koos Terblans, Head of the Department of Physics; Theo Gropp, Mechanical Engineering; back: Louis Lagrange, Head of the Department of Engineering; and Mark Jacson, Electronics.

An interdepartmental team from the University of the Free State (UFS) has announced that it will enter and participate in the 2020 Sasol Solar Challenge, scheduled to take place from 11 to 19 September this year. 

For the challenge, Team UFS will build a self-propelled manned vehicle that uses solar power systems to travel from point A to point B. The 14-member team of the UFS will travel on public roads from Pretoria to Cape Town via a predefined route over eight days. They will compete against more than 15 other teams, both local and international. The team that finishes with the greatest distance covered within the allotted time, will win the race. Teams will race every day between 07:30 and 17:00.

The four drivers to operate the vehicles will be selected from participating UFS departments in the coming months.

First solar car for the UFS
Dr Hendrik van Heerden from the Department of Physics has been planning the solar car project – Lengau (meaning Cheetah in Sesotho) – over the past year. He will start assembling the car in the next month together with colleagues and students from both the Departments of Physics and Engineering Sciences (EnSci).

Not only is this a dream come true, but it is also an opportunity for the UFS to show that they can do this. “We do not need the backing of a large and long-established engineering department to build a car like this, a young and vibrant team can do just as much!”, says Dr Van Heerden, who plans to complete the car within a few months, ready to be calibrated and tested later in June.

Capacity in green and sustainable engineering
“The ability of Team UFS to participate is possible due to recent research developments on photovoltaic technologies (solar cells) in the Department of Physics, a well-established leader in the field of surface and material sciences. The university also has established capacity in the fields of photoluminescence and nanomaterials (nanomaterials in energy storage). Additionally, with the establishment of EnSci, the university has expanded into this field, which will bring building capacity in the area of green and sustainable engineering to the project,” says Dr Van Heerden.

Promoting development into green technologies and 4IR
According to Dr Van Heerden, it is clear that the university wishes to become a strong role player in the development and utilisation of green energy, as can be seen in the implementation of relevant technologies on its various campuses. “Thus, for the UFS to be recognised in this research area, it is important to participate in related ‘green’ events where staff and students can build their capacity of practical knowledge by constructing participation equipment such as the solar car.”

He believes that this project has the potential to become a strong base for student training and capacity building in all technological fields, which can promote base development to 4IR.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept