Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 March 2020 | Story Leonie Bolleurs | Photo Supplied
Solar car Team
Excited about a first for the UFS, Team UFS is entering the 2020 Sasol Solar Challenge. From the left, front, are: Fouché Blignaut, Mechatronic Engineering; Nathan Bernstein, Agricultural Engineering; Lucas Erasmus, Physics; middle: Barend Crous, Manufacturing and Instrumentation; Hendrik van Heerden, Physics (team leader); Antonie Fourie, Physics; Prof Danie Vermeulen, Dean of the Faculty of Natural and Agricultural Sciences (team director); Prof Koos Terblans, Head of the Department of Physics; Theo Gropp, Mechanical Engineering; back: Louis Lagrange, Head of the Department of Engineering; and Mark Jacson, Electronics.

An interdepartmental team from the University of the Free State (UFS) has announced that it will enter and participate in the 2020 Sasol Solar Challenge, scheduled to take place from 11 to 19 September this year. 

For the challenge, Team UFS will build a self-propelled manned vehicle that uses solar power systems to travel from point A to point B. The 14-member team of the UFS will travel on public roads from Pretoria to Cape Town via a predefined route over eight days. They will compete against more than 15 other teams, both local and international. The team that finishes with the greatest distance covered within the allotted time, will win the race. Teams will race every day between 07:30 and 17:00.

The four drivers to operate the vehicles will be selected from participating UFS departments in the coming months.

First solar car for the UFS
Dr Hendrik van Heerden from the Department of Physics has been planning the solar car project – Lengau (meaning Cheetah in Sesotho) – over the past year. He will start assembling the car in the next month together with colleagues and students from both the Departments of Physics and Engineering Sciences (EnSci).

Not only is this a dream come true, but it is also an opportunity for the UFS to show that they can do this. “We do not need the backing of a large and long-established engineering department to build a car like this, a young and vibrant team can do just as much!”, says Dr Van Heerden, who plans to complete the car within a few months, ready to be calibrated and tested later in June.

Capacity in green and sustainable engineering
“The ability of Team UFS to participate is possible due to recent research developments on photovoltaic technologies (solar cells) in the Department of Physics, a well-established leader in the field of surface and material sciences. The university also has established capacity in the fields of photoluminescence and nanomaterials (nanomaterials in energy storage). Additionally, with the establishment of EnSci, the university has expanded into this field, which will bring building capacity in the area of green and sustainable engineering to the project,” says Dr Van Heerden.

Promoting development into green technologies and 4IR
According to Dr Van Heerden, it is clear that the university wishes to become a strong role player in the development and utilisation of green energy, as can be seen in the implementation of relevant technologies on its various campuses. “Thus, for the UFS to be recognised in this research area, it is important to participate in related ‘green’ events where staff and students can build their capacity of practical knowledge by constructing participation equipment such as the solar car.”

He believes that this project has the potential to become a strong base for student training and capacity building in all technological fields, which can promote base development to 4IR.

News Archive

UFS PhD student receives more than R5,8 million to take agricultural research to African farmers
2015-07-06

Prof Maryke Labuschagne and Bright Peprah. (Photo: Supplied)

Bright Peprah, a Plant Breeding PhD student from Ghana in the Department of Plant Sciences at the University of the Free State received an award from the competitive Program for Emerging Agricultural Research Leaders (PEARL) of the Bill and Melinda Gates Foundation (BMGF) for one of his projects.

From the more than 750 proposals for funding that were received from African researchers, only 19 received funding from PEARL. PEARL is an agricultural initiative by the BMGF to take agricultural research products to African farmers. It also aims at involving the youth and women in agriculture.

Peprah’s proposal to introgress beta carotene into farmer-preferred cassava landraces was part of the final 19 proposals funded. The project is being led by the Council for Scientific and Industrial Research (CSIR)Crops Research Institute (CRI), and has the International Institute of Tropical Agriculture (IITA) and the International Centre for Tropical Agriculture (CIAT) as international partners with Peprah as the principal investigator.


The development of nutrient-dense cassava cultivars needs attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.
Photo: Supplied

He received $473 000 (R5,8 million) for his project on the improvement of beta-carotene content in cassava.

Peprah decided on this project because the populations of underdeveloped and developing countries, such as Ghana, commonly suffer undernourishment and/or hidden hunger, predisposing them to diseases from micronutrients deficiencies. “Vitamin A deficiency constitutes an endemic public health problem which affects women and children largely,” he says.

“In Africa, cassava is widely consumed by the populace. Unfortunately, in these areas, malnutrition is endemic to a significant extent, partly due to the low micronutrients in this tuberous root crop, which is a major component of most household diets. It is for this reason that the development of nutrient- dense cassava cultivars needs much attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.

“To date we have selected top eight genotypes from germplasm collected from the International Institute of Tropical Agriculture (IITA) which are high in carotenoids and also poundable, a key trait to Ghanaian farmers. These eight genotypes have been planted at different locations in Ghana, and being evaluated by different stakeholders (consumers, researchers, producers, commercial farmers, processors, etc.). If found suitable, the genotypes will be released to farmers, which we hope will solve some of the micronutrient problems in Ghana.

“My projects seek to develop new cassava varieties that will have both high dry matter and beta carotene which has been reported to be negatively correlated (as one increase, the other decreases). The breeding method will be crossing varieties that are high in beta carotene with those with high dry matter, and checking the performance of the seedlings later. Developing such new varieties (yellow flesh cassava) will increase their adoption rate by Ghanaian farmers,” he said.

Prof Maryke Labuschagne, Professor in Plant Breeding in the Department Plant Sciences and Peprah’s study leader, said: “This project has the potential to alleviate vitamin A deficiency in the West African region, where this deficiency is rampant, causing blindness in many people, especially children."

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept