Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 March 2020 | Story Amanda Tongha and Andre Damons | Photo Johan Roux
 UFS postgraduate welcoming
Attending the Postgraduate Welcoming were, from the left: Itumeleng Mutla, second-year master’s student; Prof Corli Witthuhn, Vice-Rector: Research, Innovation and Internationalisation; Prof Witness Mudzi, Director of the Postgraduate School; Hesma van Tonder, Chief Officer: Research Librarian; and John van Niekerk, a master’s student.

The University of the Free State prides itself on being an institution committed to excellence in postgraduate education. In 2019, the UFS boasted more than 6 900 postgraduate students enrolled for postgraduate diplomas, honours, master’s and doctoral qualifications. Of these, 77% previously enrolled at the UFS, while 23% started at the institution for the first time.

Targeting this group of students who make up 17% of the total number of degree-seeking students, the UFS Postgraduate School formally welcomed new senior students to the university on Friday 6 March. 

Postgraduate success
“It is the best time to be a senior student, and I hope it is a wonderful experience,” said Prof Corli Witthuhn, Vice-Rector: Research, Innovation and Internationalisation in her welcoming address to the more than 150 postgraduate students gathered in the Reitz Hall of the Centenary Complex. 

Giving reasons as to why Kovsie students should consider postgraduate studies, Prof Witthuhn said there are many opportunities associated with making the jump from undergraduate to postgraduate student.  

“All the data shows that postgraduate studies increase employability. It creates the opportunity to deeper engage with the field that you are interested in.”
 
The postgraduate journey 
D
r Musawenkosi Saurombe, Senior Lecturer in the Department of Industrial Psychology who became the youngest PhD holder on the African continent at age 23, was also on hand to offer advice. 

“Are you willing to see the task to completion? How badly do you want it?” she challenged postgraduate students, talking about her journey from 16-year old first-year student to 23-year-old doctoral degree holder. 

Itumeleng Mutla, who is in the second year of her master’s degree in Administration, said she found the speech by Dr Saurombe inspiring and encouraging. “I felt like a groupie and took pictures with her afterwards. We felt inspired by her story and she encouraged me in my own studies. I think I am also going to push to finish my studies earlier,” she said.

John van Niekerk, a master’s student in Education and Psychology, said Saurombe’s talk was brilliant and he would like her to give a talk to learners at Kimberley Boys High, where he is a teacher. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept