Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2020 | Story Nitha Ramnath


The quality of the following University of the Free State (UFS) Accountancy programmes is internationally recognised, as it has been accredited by the Association of Chartered Certified Accountants (ACCA) after a thorough review of the modules offered:

• Bachelor of Accountancy (BAcc)
• Bachelor of Commerce Honours in Accounting (BComHons in Accounting)
• Postgraduate Diploma in General Accounting (PGDip [General Accountancy])

The implications of this accreditation are that graduates of these programmes will be eligible for direct admission to the Strategic Professional level (i.e. the highest level) of the ACCA qualification structure – a level aimed at preparing students for future leadership positions. Graduates of the BCom Accounting (BCom [Accounting]) programme will receive exemption from all of the ACCA’s ‘applied knowledge’ examinations as well as many of its ‘applied skills’ examinations.

According to the ACCA website: “We’re a thriving global community of 219 000 members and 527 000 students based in 179 countries that upholds the highest professional and ethical values.” 

Internationally recognised accreditation

Haneke van Zyl, the Programme Director: General Accountancy and Research at the UFS, commented: “As this designation is internationally recognised, the ACCA accreditation of our programmes is vital in the School of Accountancy’s quest to acknowledge our diverse student body and to provide a wide range of opportunities to our Accounting students.  We believe that each of our students should be empowered to become the best versions of themselves – and this accreditation will open more doors for them.”  

As a result of this accreditation, ACCA will also actively assist UFS graduates of the aforementioned programmes to pursue ACCA membership through programmes such as ‘Accelerate’, which subsidises the various fees payable by aspirant members of ACCA.

Prof Frans Prinsloo, the Director of the School of Accountancy at the UFS, added: “We are very proud of the quality of our programmes – which are now accredited by all the leading professional bodies that operate in South Africa, i.e. the SA Institute of Chartered Accountants (SAICA), the SA Institute of Professional Accountants (SAIPA), the Chartered Institute of Management Accountants (CIMA) and most recently, the Association of Chartered Certified Accountants (ACCA).  This is testament not only to the quality of the school’s curricula and teaching and learning resources, but vitally important also to the calibre of academic staff – who are not only highly qualified and experienced in facilitating teaching and learning, but also committed to their students’ success.” 
 
Van Zyl added: “We have drawn on the curriculum structures of these leading professional bodies to inform our curricula – thereby ensuring the continued relevance of our graduates in the fast changing world of work that is being transformed by the 4th Industrial Revolution. Far from becoming obsolete in this environment, appropriately qualified accountants will become key providers of credible information for organisational decision-making – a function without which no organisation can be successful and thrive.” 

Prof Prinsloo acknowledged the hard work of the colleagues in developing all the required documents needed to obtain the ACCA accreditation: “The accreditation is the result of a combined effort by the colleagues from the School of Accountancy, guided by the responsible programme director, Mrs Haneke van Zyl. It is testament to the hard work and effort that the lecturers involved in the programmes have put in.”


News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept