Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 May 2020 | Story Prof Francis Petersen | Photo Sonia Small
Prof Francis Petersen.

In a rapidly changing, uncertain and complex world, the role that universities are playing as the engines of social mobility, as drivers of the economy and as generators of new ideas, is now more critical than ever.  Due to the universal nature of knowledge, universities are global in scope – a space that encourages new ideas, controversy, inquiry, and argument and challenges orthodox views, but they are also deeply entrenched in their local environment, influenced by socio-economic and political dynamics.  There is an expectation that universities should exhibit great levels of responsiveness and public accountability, with higher levels of trust in higher education, and between higher education and government, and higher education and the public.  The challenge for both higher education and government is to allow institutional autonomy without oppressive accountability.  

Over the past few years, the purpose of universities has been challenged in relation to their role in society, their advocacy for speaking truth to power, their continuous strive to be great universities without being elitist, and their ability to function in an age of populism. The Trump administration and, more recently, Brexit have demonstrated that there is a decline in the respect for evidence and advice from subject-specific experts.  It seems (as in the case of the Trump administration) as if empirical reality does not matter, nor does empirical reasoning form the basis of public policy – a political place that is becoming increasingly anti-intellectual.  Emotion and personal belief have been shown to carry more weight than objective facts and evidence in terms of influencing public opinion.  Fake news and ‘the alternative truth’ have also challenged the fundamental principles of a university – academic freedom and the generation of new knowledge in the pursuit of truth.

A digitally unequal society
The COVID-19 pandemic has shown deep fault lines in our society – stark poverty and inequality – that universities should engage with (and they do); however, they cannot eliminate it on their own, but can be part of the solution.  South Africa is the most unequal society in the world.  Before the COVID-19 pandemic, the South African economy was already in deep trouble, with sovereign downgrades by all the rating agencies and with an unemployment rate close to 30%.   The national lockdown, in an attempt to ‘flatten the infection curve’ and hence manage the response of the national health system to COVID-19 cases, has added to the pressure on the economy.  It is envisaged that a large number of people (estimated between 3 and 7 million South Africans) will lose their jobs after the national lockdown period, adding to poverty and an already high unemployment rate.  Even during the lockdown period, there are many South Africans living in crowded spaces, hence finding it difficult to practise social distancing, may not have running water and proper sanitation, and possibly do not have regular access to food.  

As schools and the post-school education and training sectors move online with their learning, it further shows how digitally unequal our society really is – access to connectivity, data, and an appropriate digital device is a challenge, and electricity is not evenly distributed or is non-existent in our society.  These institutions, within the environment of digital inequality, are ensuring that digital equity is maintained as far as possible.  Many churches, business leaders, and certain politicians have called for a different social pact between business, labour, and government to address the state of the economy – any such action, however, must be supplemented by concrete measures for social reform.

Regaining trust in universities
But perhaps this pandemic has also created an opportunity for science and evidence to regain credibility in informing government decisions and public trust, and for universities to demonstrate respect for evidence. During the initial stages (early March) of COVID-19 in South Africa, the epidemiologists and virologists have shown through confirmed data from the National Institute of Communicable Diseases (NICD) that South Africa was in the early phase of the infection curve – also interpreted to be the relatively low-risk phase of the curve; this would be the right time to apply the principle of social distancing.  It allowed certain organisations (such as universities) to pro-actively suspend part of their activities so as to minimise the number of people in their operational environment, well before the national lockdown was announced on 26 March – a decision based on science.

Through data and proper analyses, the NICD, other scientific bodies and the Ministerial Advisory Committee on COVID-19 provided evidence-based information to government and the public, from which meaningful decisions could be taken.  The South African government has made it perfectly clear that decisions around COVID-19 will be made based on the science associated with this pandemic – a stance to be applauded.  Hence, the risk-adjusted approach of ‘opening up’ the economy through easing the lockdown measures but constantly monitoring the infection curve is an excellent example of risk management while continuously assessing the risks.

Universities, science laboratories, and pharmaceutical companies around the globe are hard at work to develop an effective vaccine for COVID-19, which is another opportunity to demonstrate how science can assist in protecting people from this terrible virus. Universities are making advances in personal protective equipment (PPE), the development of new technologies for non-ICU provision of oxygen to COVID-19 patients, more advanced methods of testing (for the virus) to reduce turnaround times, and various other scientific studies.  

This platform is giving universities a renewed impetus to use science and scientific developments to advance societal agendas such as climate change, poverty and inequality, public health and social justice (ethics of care) – and more immediate – assisting in re-building a strong South African economy.  It is an opportunity for the public and politicians to regain trust in universities, but it is also an opportunity for universities to profile their public intellectuals so that the value of science and evidence-based output is part of policy debates and informed decision-making.  However, in doing so, universities must strengthen their relationship with society at large, be inquiry-driven, and at the same time be learning and co-creating.

Prof Francis Petersen is Rector and Vice-Chancellor of the University of the Free State.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept