Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2020 | Story Prof Thidziambi Phendla. | Photo Supplied
Prof Thidziambi Phendla.

Our lives as we know it will never be the same again because of the Covid-19 pandemic. The education system, among other sectors, will be subjected to changes in the provisioning of teaching and learning. 

School disruptions are a familiar phenomenon in both basic and post-school education in South Africa. In recent years, South Africa has seen waves of student boycotts, disruptions, and shutdowns of universities and TVET colleges. Most disruptions lasted for a few days, while some went on for several weeks. One case in particular is that of Vuwani in Limpopo, where more than 50 schools were either vandalised or burned to ashes; nevertheless, the school year was recovered, and learners progressed to the next level. The main difference between the usual disruptions and the current situation lies in the enormity of the shutdown, given that it is clouded at a national level by unpredictable decisions made by the National Committee. 

Shortening school holidays
If the June exams were to be scrapped, the chief challenge would be the lost opportunity to evaluate and assess the extent to which the students have achieved the academic objectives stipulated for the subjects in the curriculum. June examinations for the other grades may not have a serious impact on the learner’s progress to the next class, as other forms of assessment could still be used. However, for matric learners, scrapping the June exams may have a huge effect, since learners require quality assessed examination results to guarantee entrance into higher education institutions.

Shortening of school holidays may not have a huge impact on learners, as this system has been in operation for many years. Many of the best performing schools shorten the school holidays to assist learners in Grades 11 and 12. In many schools, learners continue with normal schooling during the June holidays and rest during the last week of the holiday.  This strategy is already being used by the best performing schools in their quest to support learners to achieve excellent matric results. Depending on the number of days lost during the national lockdown, the option of shortening the June holidays may be the most commendable.

At face value, the strategy to lengthen school days may be the most preferred, as a number of schools in the country are already implementing it at a deeper level. Increasing the number of teaching hours may, however, have an adverse impact on the learners, who may experience enormous mental exhaustion. If the day is lengthened, it is advisable to consider not more than five hours per week.  

Deliver modern and classroom-targeted technologies 
To complement the time recovery mentioned above, there would be a need for a series of changes in some, if not all, the fundamental elements of the effective provision of teaching and learning discussed below. First, change in pedagogical approaches is inevitable. Therefore, classroom teaching will not be the same again. Second, teachers will be compelled to adapt to the use of assessment data in their endeavours to drive teaching and learning. Third, teaching in the 4IR will no longer be negotiable, but will demand advanced skills to deliver modern and classroom-targeted technologies.

Fourth, it will be crucial for teachers to acquire innovative skills to manage students’ undesirable behaviour and conduct. Fifth, immense attention to curriculum mapping, integrated learning, and lesson planning will be required. Last, pastoral care responsibilities that include social and emotional support strategies will help provide the foundation to support teaching and learning. 

In conclusion, the principal elements that make teaching and learning possible and attainable, are the teachers who will be required to learn new skills and approaches to fast-track recovery of learning. If the lockdown is lifted and schools are reopened, the number of learners must be reduced dramatically from the average of 50 to a maximum of 20 learners in a classroom in order to maintain social distancing.

Prof Thidziambi Phendla is currently Manager of Work-Integrated Learning at the University of the Free State. She is the Founder and Director of the Domestic Worker Advocacy Forum (DWAF) and the Study Clinic Surrogate Supervision; and Chair of the Council of the Tshwane North TVET College (ministerial appointment).


News Archive

Africa the birthplace of mathematics, says Prof Atangana
2017-11-17


 Description: Prof Abdon Atangana, African Award of Applied Mathematics  Tags: Prof Abdon Atangana, African Award of Applied Mathematics

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied

 

Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.

When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.

Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana. 

Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.

Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.

Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation. 

Fractal geometry

“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems. 

“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said. 

“Can Africa rise again?” Prof Atangana believes it can.

He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept