Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2020 | Story Prof Thidziambi Phendla. | Photo Supplied
Prof Thidziambi Phendla.

Our lives as we know it will never be the same again because of the Covid-19 pandemic. The education system, among other sectors, will be subjected to changes in the provisioning of teaching and learning. 

School disruptions are a familiar phenomenon in both basic and post-school education in South Africa. In recent years, South Africa has seen waves of student boycotts, disruptions, and shutdowns of universities and TVET colleges. Most disruptions lasted for a few days, while some went on for several weeks. One case in particular is that of Vuwani in Limpopo, where more than 50 schools were either vandalised or burned to ashes; nevertheless, the school year was recovered, and learners progressed to the next level. The main difference between the usual disruptions and the current situation lies in the enormity of the shutdown, given that it is clouded at a national level by unpredictable decisions made by the National Committee. 

Shortening school holidays
If the June exams were to be scrapped, the chief challenge would be the lost opportunity to evaluate and assess the extent to which the students have achieved the academic objectives stipulated for the subjects in the curriculum. June examinations for the other grades may not have a serious impact on the learner’s progress to the next class, as other forms of assessment could still be used. However, for matric learners, scrapping the June exams may have a huge effect, since learners require quality assessed examination results to guarantee entrance into higher education institutions.

Shortening of school holidays may not have a huge impact on learners, as this system has been in operation for many years. Many of the best performing schools shorten the school holidays to assist learners in Grades 11 and 12. In many schools, learners continue with normal schooling during the June holidays and rest during the last week of the holiday.  This strategy is already being used by the best performing schools in their quest to support learners to achieve excellent matric results. Depending on the number of days lost during the national lockdown, the option of shortening the June holidays may be the most commendable.

At face value, the strategy to lengthen school days may be the most preferred, as a number of schools in the country are already implementing it at a deeper level. Increasing the number of teaching hours may, however, have an adverse impact on the learners, who may experience enormous mental exhaustion. If the day is lengthened, it is advisable to consider not more than five hours per week.  

Deliver modern and classroom-targeted technologies 
To complement the time recovery mentioned above, there would be a need for a series of changes in some, if not all, the fundamental elements of the effective provision of teaching and learning discussed below. First, change in pedagogical approaches is inevitable. Therefore, classroom teaching will not be the same again. Second, teachers will be compelled to adapt to the use of assessment data in their endeavours to drive teaching and learning. Third, teaching in the 4IR will no longer be negotiable, but will demand advanced skills to deliver modern and classroom-targeted technologies.

Fourth, it will be crucial for teachers to acquire innovative skills to manage students’ undesirable behaviour and conduct. Fifth, immense attention to curriculum mapping, integrated learning, and lesson planning will be required. Last, pastoral care responsibilities that include social and emotional support strategies will help provide the foundation to support teaching and learning. 

In conclusion, the principal elements that make teaching and learning possible and attainable, are the teachers who will be required to learn new skills and approaches to fast-track recovery of learning. If the lockdown is lifted and schools are reopened, the number of learners must be reduced dramatically from the average of 50 to a maximum of 20 learners in a classroom in order to maintain social distancing.

Prof Thidziambi Phendla is currently Manager of Work-Integrated Learning at the University of the Free State. She is the Founder and Director of the Domestic Worker Advocacy Forum (DWAF) and the Study Clinic Surrogate Supervision; and Chair of the Council of the Tshwane North TVET College (ministerial appointment).


News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept