Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2020 | Story Prof Thidziambi Phendla. | Photo Supplied
Prof Thidziambi Phendla.

Our lives as we know it will never be the same again because of the Covid-19 pandemic. The education system, among other sectors, will be subjected to changes in the provisioning of teaching and learning. 

School disruptions are a familiar phenomenon in both basic and post-school education in South Africa. In recent years, South Africa has seen waves of student boycotts, disruptions, and shutdowns of universities and TVET colleges. Most disruptions lasted for a few days, while some went on for several weeks. One case in particular is that of Vuwani in Limpopo, where more than 50 schools were either vandalised or burned to ashes; nevertheless, the school year was recovered, and learners progressed to the next level. The main difference between the usual disruptions and the current situation lies in the enormity of the shutdown, given that it is clouded at a national level by unpredictable decisions made by the National Committee. 

Shortening school holidays
If the June exams were to be scrapped, the chief challenge would be the lost opportunity to evaluate and assess the extent to which the students have achieved the academic objectives stipulated for the subjects in the curriculum. June examinations for the other grades may not have a serious impact on the learner’s progress to the next class, as other forms of assessment could still be used. However, for matric learners, scrapping the June exams may have a huge effect, since learners require quality assessed examination results to guarantee entrance into higher education institutions.

Shortening of school holidays may not have a huge impact on learners, as this system has been in operation for many years. Many of the best performing schools shorten the school holidays to assist learners in Grades 11 and 12. In many schools, learners continue with normal schooling during the June holidays and rest during the last week of the holiday.  This strategy is already being used by the best performing schools in their quest to support learners to achieve excellent matric results. Depending on the number of days lost during the national lockdown, the option of shortening the June holidays may be the most commendable.

At face value, the strategy to lengthen school days may be the most preferred, as a number of schools in the country are already implementing it at a deeper level. Increasing the number of teaching hours may, however, have an adverse impact on the learners, who may experience enormous mental exhaustion. If the day is lengthened, it is advisable to consider not more than five hours per week.  

Deliver modern and classroom-targeted technologies 
To complement the time recovery mentioned above, there would be a need for a series of changes in some, if not all, the fundamental elements of the effective provision of teaching and learning discussed below. First, change in pedagogical approaches is inevitable. Therefore, classroom teaching will not be the same again. Second, teachers will be compelled to adapt to the use of assessment data in their endeavours to drive teaching and learning. Third, teaching in the 4IR will no longer be negotiable, but will demand advanced skills to deliver modern and classroom-targeted technologies.

Fourth, it will be crucial for teachers to acquire innovative skills to manage students’ undesirable behaviour and conduct. Fifth, immense attention to curriculum mapping, integrated learning, and lesson planning will be required. Last, pastoral care responsibilities that include social and emotional support strategies will help provide the foundation to support teaching and learning. 

In conclusion, the principal elements that make teaching and learning possible and attainable, are the teachers who will be required to learn new skills and approaches to fast-track recovery of learning. If the lockdown is lifted and schools are reopened, the number of learners must be reduced dramatically from the average of 50 to a maximum of 20 learners in a classroom in order to maintain social distancing.

Prof Thidziambi Phendla is currently Manager of Work-Integrated Learning at the University of the Free State. She is the Founder and Director of the Domestic Worker Advocacy Forum (DWAF) and the Study Clinic Surrogate Supervision; and Chair of the Council of the Tshwane North TVET College (ministerial appointment).


News Archive

UFS boasts with world class research apparatus
2005-10-20

 

 

At the launch of the diffractometer were from the left Prof Steve Basson (Chairperson:  Department of Chemistry at the UFS), Prof Jannie Swarts (Unit for Physical and Macro-molecular Chemistry at the UFS Department of Chemistry), Mr Pari Antalis (from the provider of the apparatus - Bruker SA), Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS), Prof André Roodt (head of the X-ray diffraction unit at the UFS Department of Chemistry) and Prof Teuns Verschoor (Vice-Rector:  Academic Operations at the UFS).

UFS boasts with world class research apparatus
The most advanced single crystal X-ray diffractometer in Africa has been installed in the Department of Chemistry at the University of the Free State (UFS).

“The diffractometer provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, currently synthesized in the Department of Chemistry.  It also includes the area of homogeneous catalysis where new compounds for industrial application are synthesised and characterised and whereby SASOL and even the international petrochemical industry could benefit, especially in the current climate of increased oil prices,” said Prof Andrè Roodt, head of the X-ray diffraction unit at the UFS Department of Chemistry.

The installation of the Bruker Kappa APEX II single crystal diffractometer is part of an innovative programme of the UFS management to continue its competitive research and extend it further internationally.

“The diffractometer is the first milestone of the research funding programme for the Department of Chemistry and we are proud to be the first university in Africa to boast with such advanced apparatus.  We are not standing back for any other university in the world and have already received requests for research agreements from universities such as the University of Cape Town,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS.

The diffractometer is capable of accurately analysing molecules in crystalline form within a few hours and obtain the precise geometry – that on a sample only the size of a grain of sugar.   It simultaneously gives the exact distance between two atoms, accurate to less than fractions of a billionth of a millimetre.

“It allows us to investigate certain processes in Bloemfontein which has been impossible in the past. We now have a technique locally by which different steps in key chemical reactions can be evaluated much more reliable, even at temperatures as low as minus 170 degrees centigrade,” said Prof Roodt.

A few years ago these analyses would have taken days or even weeks. The Department of Chemistry now has the capability to investigate chemical compounds in Bloemfontein which previously had to be shipped to other, less sophisticate sites in the RSA or overseas (for example Sweden, Russia and Canada) at significant extra costs.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
19 October 2005   

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept