Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 May 2020 | Story Prof Thidziambi Phendla. | Photo Supplied
Prof Thidziambi Phendla.

Our lives as we know it will never be the same again because of the Covid-19 pandemic. The education system, among other sectors, will be subjected to changes in the provisioning of teaching and learning. 

School disruptions are a familiar phenomenon in both basic and post-school education in South Africa. In recent years, South Africa has seen waves of student boycotts, disruptions, and shutdowns of universities and TVET colleges. Most disruptions lasted for a few days, while some went on for several weeks. One case in particular is that of Vuwani in Limpopo, where more than 50 schools were either vandalised or burned to ashes; nevertheless, the school year was recovered, and learners progressed to the next level. The main difference between the usual disruptions and the current situation lies in the enormity of the shutdown, given that it is clouded at a national level by unpredictable decisions made by the National Committee. 

Shortening school holidays
If the June exams were to be scrapped, the chief challenge would be the lost opportunity to evaluate and assess the extent to which the students have achieved the academic objectives stipulated for the subjects in the curriculum. June examinations for the other grades may not have a serious impact on the learner’s progress to the next class, as other forms of assessment could still be used. However, for matric learners, scrapping the June exams may have a huge effect, since learners require quality assessed examination results to guarantee entrance into higher education institutions.

Shortening of school holidays may not have a huge impact on learners, as this system has been in operation for many years. Many of the best performing schools shorten the school holidays to assist learners in Grades 11 and 12. In many schools, learners continue with normal schooling during the June holidays and rest during the last week of the holiday.  This strategy is already being used by the best performing schools in their quest to support learners to achieve excellent matric results. Depending on the number of days lost during the national lockdown, the option of shortening the June holidays may be the most commendable.

At face value, the strategy to lengthen school days may be the most preferred, as a number of schools in the country are already implementing it at a deeper level. Increasing the number of teaching hours may, however, have an adverse impact on the learners, who may experience enormous mental exhaustion. If the day is lengthened, it is advisable to consider not more than five hours per week.  

Deliver modern and classroom-targeted technologies 
To complement the time recovery mentioned above, there would be a need for a series of changes in some, if not all, the fundamental elements of the effective provision of teaching and learning discussed below. First, change in pedagogical approaches is inevitable. Therefore, classroom teaching will not be the same again. Second, teachers will be compelled to adapt to the use of assessment data in their endeavours to drive teaching and learning. Third, teaching in the 4IR will no longer be negotiable, but will demand advanced skills to deliver modern and classroom-targeted technologies.

Fourth, it will be crucial for teachers to acquire innovative skills to manage students’ undesirable behaviour and conduct. Fifth, immense attention to curriculum mapping, integrated learning, and lesson planning will be required. Last, pastoral care responsibilities that include social and emotional support strategies will help provide the foundation to support teaching and learning. 

In conclusion, the principal elements that make teaching and learning possible and attainable, are the teachers who will be required to learn new skills and approaches to fast-track recovery of learning. If the lockdown is lifted and schools are reopened, the number of learners must be reduced dramatically from the average of 50 to a maximum of 20 learners in a classroom in order to maintain social distancing.

Prof Thidziambi Phendla is currently Manager of Work-Integrated Learning at the University of the Free State. She is the Founder and Director of the Domestic Worker Advocacy Forum (DWAF) and the Study Clinic Surrogate Supervision; and Chair of the Council of the Tshwane North TVET College (ministerial appointment).


News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept