Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 May 2020 | Story Dr Munyaradzi Mushonga | Photo Supplied
Dr Munyaradzi Mushonga

As we virtually celebrate Africa Month in 2020, it is worth reflecting on the journey of the African university as a reminder of where we are coming from, where we are today, and where we are going. The emergence and development of university education in Africa can be conceptualised in four distinct phases, namely the pre-colonial university (before 1900), the colonial university (1900-c.1960), the developmental (post-colonial) university (1961-c.1980), and the market (entrepreneurial)/crisis-era university (1980-present). If we follow this scheme, with the Coronavirus and COVID-19 in our midst, the African university is entering the fifth phase. Just a week into the pandemic, African universities were already experimenting with various online learning and teaching approaches to keep the academic programme afloat, away from the walled university. 

Higher education on the African continent long antedates the establishment of Western-style universities in the 19th century and is traceable to the 3rd century BC. The oldest university still in existence is Al-Azhar in Egypt, founded in 969 AD. It is regarded as one of the leading Islamic HE institutions in the world today. Not only did the idea of higher learning begin in Africa, but the spread of universities into “Western Europe was mainly through the traffic of knowledge and ideas that flowed across the Strait of Gibraltar from North Africa” (Tisani, 2005:2). 

Colonial universities were a product of the European colonisation of Africa and most of these emerged after the Second World War. Their mandate was to reorient European colonies through the idea of ‘colonial development’ as well as to “cultivate and sustain indigenous elites” moulded along European traditions; elites that would be crucial in maintaining links with the former colonial powers after the departure of the physical empire from Africa (Munene, 2010:400). Thus, colonial universities were among the major instruments and vehicles of cultural westernisation and assimilation, bent on removing the hard disk of previous African knowledge and memory, and downloading into it a software of European memory. Today, the continent remains dominated by universities shaped by the logics of colonialism. It is this resilient colonial university that decoloniality seeks to disrupt and to plant in its place an African university steeped in epistemologies of the Global South. 

Following the retreat of the physical empire, African states established development-orientated universities. It was readily accepted that HE was capable of contributing to the social, cultural, and economic development of Africa. As such, many universities were initially generously funded and supported by the state. However, this commitment only lasted for about a decade or so. The ‘independence’ university was overly concerned with first – ‘Africanising’ the public service, and second – with the anti-colonialist aspiration of taking over and ‘Africanising’ positions within the institution. The more nationalism turned into a state project, the more pressure there was on the developmentalist university to implement a state-determined and state-driven agenda, and the more this happened, “the more critical thought was taken as subversive of the national project” (Mamdani, 2008). Resultantly, the university lost its original mandate and the international policy environment did not help matters, as the World Bank and the International Monetary Fund suggested that ‘Africa did not need university education’ and called for the privatisation of public universities. 

The fate of the ‘developmental university’ was sealed in 1990 when the World Conference on Education for All prioritised elementary education. The increasing frustration with the perceived failure of the ‘developmental university’ on the one hand, and changed Western priorities and the inevitable influence of Western aid and Western academic organisations on the other hand, gave rise to the market (entrepreneurial)/crisis-era university. Since the structural adjustment programmes of the 1980s, many African universities have been under pressure to liberalise, following the retreat of the state in the provision of education. This led to various forms of disputes and contestations (#FeesMustFall is one of them) – contestations centred on the meaning, purpose, and mission of an African university (Zeleza and Olukoshi, 2004:1) in a fast decolonising yet liberalising environment. 

Today, with the Coronavirus and COVID-19 in our midst, one thing is certain – the pandemic will have a lasting impact on all national institutions, the African university included. It is not possible to predict the kind of university that might emerge both during and beyond the pandemic. However, the following questions might help us imagine such a university. What kind of university do we have (now/today)? What kind of university do we want? What kind of university do we need? What kind of university can we afford? These are transhistorical questions that have informed all previous versions of the university. Clearly, the COVID-19 pandemic is sure to give birth to another crisis-era university. While such a university will be dictated by the prevailing socio-economic and socio-political ideologies and landscapes shaped by the pandemic, we should also refuse to allow the pandemic to define such a university for us. The COVID-19 pandemic should only be used as a stage for a ‘great leap’ forward. The pandemic offers the African university a fresh start. Yet, we must, as some Kovsies have already cautioned, guard against the temptation to respond to crises in particularist and isolationist fashions. It is time to overcome. It is time to unite. It is time to grab the bull by the horns. It is time for Africa’s place in the sun. #ONEAFRICA.  

This article was written by Dr Munyaradzi Mushonga, Programme Director: Africa Studies, Centre for Gender and Africa Studies 


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept