Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 May 2020 | Story Prof Danie Brand | Photo iStock

We are indeed privileged to have this paper from Prof Toyin Falola to include in our celebrations of Africa Day. Toyin Falola is a world-renowned African. A scholar of African history and African studies, he holds the Jacob and Frances Sanger Mossiker Chair in the Humanities at the University of Texas, Austin. He has published, as author or editor, more than 100 scholarly books on topics ranging from diaspora, migration, empire and globalization to intellectual history, international relations, religion and culture. He has been awarded seven honorary doctorates and has received, among many other awards, the Distinguished Africanist Award from the African Studies Association, the Ibadan Foundation Award for Professional Excellence in Scholarship and the Cheikh Anta Diop Award for Excellence in African Studies. He served as Vice President of UNESCO’s International Scientific Committee, Slave Route Project from 2011 – 2015 and currently is a member of the Carnegie African Diaspora Fellows Programme and the International Committee of the Thabo Mbeki African Leadership Institute at UNISA.

In this wide-ranging paper, originally presented as keynote address at the Visions of African Unity (1930s – 2018) conference at the University of the Free State, Prof Falola begins with a tour of the intellectual history of ideas of African Continentalism (Pan-Africanism / African Unity), from Henry Sylvester Williams, through WEB du Bois, Marcus Garvey, George Padmore and Julius Nyerere, to Kwame Nkrumah. He then describes the current institutional landscape of African unity and present-day intellectual versions of African Continentalism. Asking, and answering the question ‘Why must Africa unite?’, he then proceeds, on the basis of a consideration of more contemporary intellectual versions of African continentalism such as Black Consciousness, Black Nationalism, Afropolitanism, and now Afrofuturism (which he depicts as ‘ideological dispensations of true African cultural recovery and re-orientation’), to propose a disaggregated approach to contemporary African unity that is not fixated on global-Northern models. This means that unity should (re)start small, working territorially from regional units toward a continental unit, on the one hand; and on the other, seeking unity and cooperation around discrete substantive themes, from the more obvious and traditional, such as economic policy, global politics and a reformed unified political and military system, to the less, such as common educational policy, synergizing science and technology with African culture(s) and language, culture and literary exchange.

We thank him for the gift.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept