Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Double achievement for Prof. Paul Grobler
2012-04-25

 

Prof. Paul Grobler
Photo: Supplied
25 April 2012

Early this year, two journal editions appearing almost simultaneously in Europe featured cover photographs based on papers by Prof. Paul Grobler of the Department of Genetics and his collaborators.

These papers stem from collaborations with Prof. Gunther Hartl at the University of Kiel (Germany) and Dr Frank Zachos from the Natural History Museum in Vienna (Austria). Both papers cover aspects of the genetics of southern African antelope species.
 
The first paper appeared in the Journal of Zoological Systematics and Evolutionary Research” (from the Wiley-Blackwell group). This was titled “Genetic structure of the common impala (Aepyceros melampus melampus) in South Africa: phylogeography and implications for conservation”.
 
In this paper, the team analysed impala from various localities in South Africa to determine the relationship between distribution and genetic structure. The results suggest a clear relationship between genetic characteristics and habitat features that regulate gene flow.
 
The second appeared in the journal Mammalian Biology (from the Elsevier group), with the title “Genetic analysis of southern African gemsbok (Oryx gazella), reveals high variability, distinct lineages and strong divergence from the East African Oryx beisa”.
 
Here, the researchers looked at various aspects of the genetics and classification of gemsbok. Among the notable findings is that gemsbok populations on the game farms studied are less inbred than previously predicted.
 
Proffs. Grobler and Hartl initiated these projects on gemsbok and impala, with sub-sections of the research later completed as M.Sc. projects by students from both South Africa and Germany.
 
Prof. Grobler has been involved with aspects of the population genetics of various mammal species since the early 1990s, and continued with this line of research after joining the UFS in 2006. Current projects in this field include work on wildebeest, vervet monkeys and white rhinoceroses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept