Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Study shows that even cheating monkeys alter their behaviour to avoid detection and punishment
2013-03-12

 

Dr Le Roux sharing a moment with the geladas (Theropithecus gelada).
Photo: Supplied
11 March 2013

A recent article headed by Dr Aliza le Roux from the University of the Free State Qwaqwa Campus’ Department of Zoology and Entomology, asserts that cheating and deception is not only a human phenomenon - it is also found in non-human animals.

“Our specific study investigated cheating and punishment in geladas. While human beings are known to deceive one another, and punish cheaters that get caught, it is actually very rare to find proof of this kind of behaviour in non-human animals,” said Dr Le Roux.

“We don't know if this is because humans are uniquely deceitful, or if it is just that animals deal with cheating differently. Our study was therefore the first to demonstrate that gelada males and females try to deceive their partners when they are cheating on them. This means they try to hide their unfaithful behaviour.” This is therefore the first investigation to document tactical deception in primates living in a natural environment.

“We also showed that the cuckolded males then punish the cheaters, but could not determine if the punishment actually caused cheaters to stop cheating,” said Dr Le Roux.

This on-going and long-term study continues to observe the population of wild geladas in the Simien Mountains National Park in Ethiopia. The study investigates primate hormones, cognition, genetics, social behaviour and conservation, and is done in collaboration with the Universities of Michigan and Pennsylvania.

The full version of the article can be accessed on (http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2468.html).


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept