Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

UFS hones focus to nurture world-class research - Business Day
2006-02-10

 

Sue Blaine
THE University of the Free State plans to concentrate academic study in five areas to strengthen its status as a research institution, the university said yesterday.

The Bloemfontein-based university will focus on areas it classes as development (economics, health, literacy and other human activities) and social transformation — an analysis of how South African society is changing from a philosophical and political viewpoint.

The other three research areas are new technologies, water resources and security, and food production and security.

“It makes sense to concentrate the university’s human resources, infrastructure, financial resources and intellectual expertise,” said university rector and vice-chancellor Prof Frederick Fourie.

The move introduces a style of research that matches international trends.

Universities in Canada, Britain and Australia are setting up their research departments in this way.

In SA, the universities of Stellenbosch, the Witwatersrand, Cape Town and KwaZulu-Natal have embarked on similar strategies.

Fourie gave the example of his alma mater, the US’s Harvard University, whose Nanoscale Science and Engineering Centre is an example of “clustering” on a larger scale.

The centre is a collaboration with Harvard, the Massachusetts Institute of Technology, the University of California, Santa Barbara, the Museum of Science, Boston, and universities in the Netherlands, Switzerland and Japan.

Fourie said the modern research world was so diverse and complex that no university could cover all bases so it was better to establish areas of expertise that made it different from its peer institutions.

Having scientists and researchers work in teams meant certain issues could be researched and developed in a multidisciplinary manner. “I think it’s the only way in which any university can excel. This will help SA become world class in selected areas,” Fourie said.

It is in chemistry that the cluster model has already had its most visible results, with a slice of the university’s on-campus pharmacological testing company Farmovs, established in the 1980s, sold to the US’s Parexel International.

The company is one of the largest biopharmaceutical outsourcing organisations in the world, providing knowledge-based contract research, medical marketing and consulting services to the global pharmaceutical, biotechnology and medical device industries, according to Biospace, an internet-based company providing resources and information to the life science industry.

President Thabo Mbeki, in his state of the nation address last Friday, committed government to allocating more resources to research, development and innovation, and increasing the pool of young researchers in SA.

He said government would “continue to engage the leadership of our tertiary institutions focused on working with them to meet the nation’s expectations with regard to teaching and research”.

The university used to be home to several A-rated scientists, who are considered by a peer review, conducted by the National Research Foundation, to be world leaders in their fields, but had lost them to other institutions. Fourie hopes to lure them back, and with them postgraduate students and funding for their work.

“At universities where you get a star researcher they tend to attract people and funding; if they leave they take that with them,” he said.

Fourie said R50m would be spent on the project, with some already spent last year and the last disbursements to be made next year.

There is R10m in seed money to gather experts and improve equipment and infrastructure, and R17m has been invested in chemistry equipment and staff.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept