Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Marieka Gryzenhout receives NRF-NSTF Award
2013-07-03

 

Dr Gryzenhout
Photo: Sonia Small
03 July 2013

“The award serves to prove that my type of research is truly relevant.” These are the words of Dr Marieka Gryzenhout of the Department of Plant Sciences at the UFS, who received the T W Kambule NRF-NSTF Award as emerging researcher in June 2013.

The award from the National Research Foundation (NRF) and the National Science and Technology Forum (NSTF) gives recognition to her outstanding contribution to science, engineering, technology and innovation (SETI) in the country.

Dr Gryzenhout is also part of the Vice-Chancellor’s Prestige Scholar Programme.

“It was an honour to be chosen as a finalist, but to even win it? Die award indicates the importance of fungi and plant pathogens, and their presence in various biological systems and that it is important to identify and categorise significant plant pathogens and fungi to enable easier access for users of these names.”

Dr Gryzenhout was in the US on the evening of the awards ceremony, attending a workshop on the identification and research of another fungus group, Fusarium. “This group is extremely important, since it includes important plant pathogens, producers of toxins in food and feed, as well as animal and human pathogens, and it also plays important ecological roles.”

She attended the Kansas State University in Kansas and paid a visit to the Bacterial Foodborne Pathogens and Mycology Unit of the US Department of Agriculture in Illinois.

Dr Gryzenhout is also a finalist in the Women in Science Awards hosted by the Department of Science and Technology. The winner will be announced in August 2013. Prof Maryke Labuschagne and Rose Lekhooa are also nominees.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept