Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Dr Henry Jordaan’s research to establish benchmarks for sustainable freshwater use in agri-food industries
2014-08-22

 

 Photo: en.wikipedia.org

Dr Henry Jordaan, Senior Lecturer in the Department of Agricultural Economics, is working on a multi-disciplinary research project for the Water Research Commission. The project assesses the water footprints of selected agri-food products that are derived from field and forage crops produced under irrigation in South Africa. These foods include animal products, such as meat and dairy, and crop products such as bread and maize meal.

“The water footprint of a food product is the total volume of freshwater that is used to produce the product, measured from the farm to the actual consumption of the food product. Thus, the water footprint is a good indicator of the impact that the consumption of a product has on our scarce freshwater resource. The agri-food sector is a major user of freshwater in South Africa with a relatively large water footprint,” says Dr Jordaan.

However, the agri-food sector also has an important role in economic development in South Africa. It generates income and employment opportunities along the value chains of the food products.

The challenge is to maximise the economic and social benefits from using freshwater in an environment where freshwater gets increasingly scarce.

Through his research, Dr Jordaan aims to establish benchmarks for sustainable freshwater use in selected agri-food industries – from an environmental, economic and social perspective. These benchmarks will inform water users on the acceptable volumes of freshwater to use to produce food products. It will also inform users of the economic and social benefits that they are being expected to generate through their actions so that their water use behaviour could be considered sustainable.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept