Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Unconventional oil and gas extraction – study for Water Research Commission reveals possible impacts
2014-11-05

 

Photo: Legalplanet.org
The Centre for Environmental Management (CEM) at the University of the Free State (UFS) recently completed a three-year project for the Water Research Commission. The purpose was to develop an interactive vulnerability map and monitoring framework for unconventional oil and gas extraction (final report still to be published).

Due to the complexity of this field, a number of participants across different disciplines and universities were involved in this trans-disciplinary study. Contributors included the Departments of Sociology, Physics and Mathematical Statistics from the UFS, the University of Pretoria Natural Hazard Centre, Africa, as well as the Institute of Marine and Environmental Law from the University of Cape Town.

Unconventional oil and gas extraction, its related impacts and the management of this activity to ensure environmental protection, is a controversial issue in many countries worldwide. Since the extraction of oil and gas using unconventional techniques is an unprecedented activity in South Africa, the project focused on understanding this extraction process as well as hydraulic fracturing and identifying possible environmental and socio-economic impacts associated with this activity in the South African context. An understanding of the possible impacts could aid government during the development of policy aimed at protecting the environment.

The researchers subsequently identified indicators to develop an interactive vulnerability map for unconventional oil and gas in South Africa. The vulnerability map focuses on specific mapping themes, which include surface water, groundwater, vegetation, seismicity and socio-economics. In addition, the map provides information on the vulnerability of the specified mapping themes to unconventional gas extraction on a regional scale. This map is intended as a reconnaissance tool to inform decision-makers on areas where additional detail field work and assessments may be required. It can also be used during Environmental Impact Assessments and determining licensing conditions.

Lastly, a monitoring framework was developed, which describes monitoring requirements for specific entities – surface water, groundwater, vegetation, seismicity and socio-economics – for the different phases of unconventional oil and gas extraction. Such monitoring is an important part of environmental protection. It is especially important for South Africa to perform baseline monitoring before exploration starts to ensure that we will have reference conditions to identify what impact oil and gas extraction activities has on the biophysical and socio-economic environments.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept