Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Traditional medicine can play important role in modern drugs discovery
2014-11-11

Indigenous knowledge possesses a great potential to improve science. Making use of this source may lead to advanced technological innovations. This is according to Dr Sechaba Bareetseng, UFS alumnus and Indigenous Knowledge Systems (IKS) Manager at the Council for Scientific and Industrial Research (CSIR).
Dr Bareetseng recently addressed the seventh annual IKS symposium on the Qwaqwa Campus.
“Interfacing indigenous and local knowledge with scientific knowledge has the potential of encouraging and developing inventions, especially in the pharmaceutical industry,” said Dr Bareetseng.
 
“Such interfacing can also enable access to both sets of knowledge without any discrimination whatsoever. It would also encourage co-existence that would improve understanding between the two.”
 
“Traditional medicine,” said Dr Bareetseng, “can play an extended role in modern drugs discovery as it is already happening in Botswana and New Zealand. These two countries are leading this wave of new thinking in as far as drug development is concerned.”
 
Dr Bareetseng also called on established researchers to start embracing the local communities into their research.
 
“Contemporary scientific research demands that local communities must co-author research conducted within and with them by the universities and research institutions. This would help in maintaining trust between the researchers and the communities that feel exploited. Regular feedback would also make communities feel part of the developments,” Dr Bareetseng argued.
 
He further called on the pharmaceutical companies specifically and researchers in general to convert valuable indigenous knowledge and resources into products and services of commercial value. “Plants, the ecosystem and indigenous knowledge must be preserved to provide a source of income for the local communities. Communities must also be protected from foreign exploitation of their intellectual property.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept