Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Chemistry Department expands its international footprint
2015-10-14

Prof André Roodt

Prof André Roodt from the Department of Chemistry at the University of the Free State has returned from a research visit at the St Petersburg State University in Russia. The research he conducted at the St Petersburg State University is part of a bilateral collaboration agreement between the University of the Free State and St Petersburg State University.

As part of his visit to Russia (from 17 to 28 September 2015), Prof Roodt presented a seminar at St Petersburg State University, and a lecture at the conference titled: International conference on Organometallic and Coordination Chemistry: Achievements and Challenges.

One of the local Russian newspapers quoted Prof Roodt as “world-renowned expert in the study of chemical kinetics and mechanisms of chemical reactions”. His presentation: Are detailed reaction mechanisms really necessary in (applied) organometallic and coordination chemistry' attracted great interest from the St Petersburg chemists.

The bilateral agreement came to life a year ago when the St Petersburg State University chemists won a grant in a competition to create an international research group, the International Laboratory of Organometallic Chemistry. The Laboratory is headed by Prof Vadim Kukushkin of the St Petersburg State University.

In addition to the employees of St Petersburg University, the research group consists of researchers from Portugal, Finland, South Africa, and Azerbaijan. Together, these groups of scientists are working on the problem of non-reactive metal activation molecules. The main theme of the research laboratory is in the catalysis and activation of metal inert molecules which then undergo significant change, and become meaningful to people chemicals, such as drugs.

As part of this initiative, a bilateral collaboration agreement exists between the St Petersburg State University and the UFS (Russian Science Foundation grant 14-43-00017). Students from our university have visited and conducted research at the St Petersburg State University while some of their students visit and research reaction kinetics at the UFS.

Prof Roodt hosted Valeria Burianova, a student from the St Petersburg University. During her visit at the UFS, she learned about response kinetics. A UFS PhD student, Carla Pretorius, joined the group in Russia where she conducted research on the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and a  potential for harvesting sun energy.

The UFS Department of Chemistry extended its international footprint further with three of its students, Mampotsu Tsosane, Petrus Mokolokolo, and Tom Kama, returning from Switzerland after a six-week research visit in the group of Prof Roger Alberto from the University of Zürich. In return, Prof Roodt hosted a Swiss PhD student, Angelo Frei from Zürich, and taught him more about reaction mechanisms.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept