Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 May 2020 | Story Valentino Ndaba | Photo iStock
UFS campuses are transforming into research instruments while simultaneously improving campus operations through the Smart Grid initiative.

Imagine living in a smart home. Imagine monitoring your household’s electricity usage via an integrated system that would notify you of your daily electricity use, peak usage times, and tariffs and consumption at the location of the house. As a user, you would be able to take advantage of such information in order to manage your resources in a more efficient manner. This is just one example of what a Smart Grid can do.

The University of the Free State’s (UFS) Faculty of Natural and Agricultural Sciences has teamed up with the Department of University Estates to drive our very own Smart Grid initiative that is transforming the university’s power network into one with full control and monitoring. “A Smart Grid allows for resource optimisation and asset protection, especially in times like these,” said Nicolaas Esterhuysen, Director of Engineering Services. 

Why is it important for our university to have a Smart Grid?
Dr Jacques Maritz, Lecturer of Engineering Sciences at the Faculty, considers a Smart Grid the natural evolution of power grids in the era of Big Data, IoT and Machine Learning. Resources such as electricity, water and steam can now be monitored and controlled to promote savings and the protection of valuable infrastructure. “Aiming towards Smart Grid status, the UFS will improve resource service-delivery to its staff and students, while sculpting a digital twin of its campus’s power grid, consumer network and resource generators,” he added.
  
How will a Smart Grid improve student success?
The integrity, sustainability and continuous supply of energy directly affects the academic project on all three campuses. The implementation of a Smart Grid could allow improved service delivery and reaction time when any utility is interrupted, as well as maintaining the valuable infrastructure that serves the UFS community.

In what way does a Smart Grid improve the lives of staff members?
According to Dr Maritz  and Esterhuysen: “A Smart Grid will support staff to perform their teaching and research duties in a seamless manner, continuously optimising the energy that they consume to enable full comfort and reliability in energy supply, whilst simultaneously generating savings in energy and preventing wastage.”

The UFS already boasts most of the fundamental building blocks associated with the Smart Grid initiative, especially focusing on monitoring, grid protection, centralised and decentralised solar PV generation and software platforms to serve all these domains. However, to integrate all of these domains into one digital real-time paradigm will be a first for the UFS.

Some examples of the UFS smart grid applications currently in practice
Real-time remote monitoring and control that focuses on the following:
- We are able to detect power outages and don’t have to rely on customer complaints. This enables faster response time and fault identification, thus less downtime and an increase in reliability;
- Solar plant generation; 
- Monitoring our standby generation fleet; 
Identifying usage patterns and saving thereof;
Benchmarking buildings in terms of application usage, area or occupancy to determine energy efficiency and identify savings; and condition-based preventive maintenance that will increase reliability while saving costs.

News Archive

Student receives international award in microbiology
2008-01-24

A postgraduate student at the University of the Free State (UFS) received an exceptional honour last month when he received the first prize for his presentation in the Biochemistry and Industrial Mycology session of the Asian Mycology Congress (AMC) held in Malaysia.

Desmond Ncango (24), a Ph.D. student from the Department of Microbial, Biochemical and Food Biotechnology received the first prize for his presentation on the inhibitory effects of non-steroidal anti inflammatory drugs (NSAIDs) such as aspirin on fungi.

This suggests that commonly used aspirin may be used as a cheap antifungal to combat yeast infections. Desmond also exposed novel lubricants that are used by yeasts for water-propelled movement. This may find application in nanotechnology in the lubrication of nanorobots, which are manmade miniature machines, invisible to the naked eye, which may in future be used to combat diseases such as cancer.

The conference, which was attended by more than 300 representatives from 27 countries, is a platform for mycologists (who are experts in fungi) around the world to come together and share their knowledge and research. “Many interested researchers listened to my presentation and were impressed by the novelty and scientific depth of my work,” said Desmond.

“The presentation was selected as the best because of its novelty, academic depth as well as applicability. The meticulous preparation and presentation style also contributed to the success,” said Prof. Lodewyk Kock, head of the Lipid Biotechnology Group at the department and main promoter of Desmond’s Ph.D. studies.

“I cannot really explain the feeling when my presentation was selected as the best as it was presented in a very difficult category and many senior researchers and professors also participated. I plan to use all the knowledge and skills I have learnt from Prof. Kock, who is my role model, especially to the benefit of disadvantage communities in South Africa. I want to follow an academic career at a tertiary institution when I have completed my Ph.D. studies,” said Desmond.

Desmond went to school in Botshabelo, Bloemfontein and completed his Grade 12 in 2000 with a distinction in Mathematics. He enrolled for a B.Sc. degree at the UFS, majoring in Microbiology and Physiology. After obtaining this qualification, he joined the postgraduate research group of Prof. Kock. He completed his M.Sc. degree with distinction last year and was privileged to have this research published in and on the cover of the Canadian Journal of Microbiology, a journal accredited by the Institute for Scientific Information (ISI).

He was one of six postgraduate students from the Lipid Biotechnology Group who attended the AMC conference in Malaysia. The students’ attendance was funded by the South African Fryer Oil Initiative (SAFOI), which is housed in the UFS Department of Microbial, Biochemical and Food Biotechnology. This initiative, steered by Prof. Kock, currently monitors edible oils in the food industry in South Africa and makes a quality seal available to the manufacturers and distributors of these edible oils.

“SAFOI’s income is used to fund my own research on various kinds of oils (including yeast oils) to enable postgraduate students to attend international congresses and to partially fund international scientific symposia and congresses,” said Prof. Kock.

 

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za 
24 January 2008

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept