Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 May 2020 | Story Andre Damons | Photo Pexels

A data scientist and research coordinator at the University of the Free State (UFS), in collaboration with his supervisor at the University of Pretoria (UP), is at the forefront of the fight against the Covid-19 virus with accurate data and analysis.
Herkulaas Combrink of the Centre for Teaching and Learning at the UFS and PhD candidate in Computer Science at the UP, said accurate data is important to prevent widespread panic and sensationalism during a global disaster such as the current pandemic. This information helps people to make informed decisions and to reduce their exposure to the threat of the virus.

Assisting decision-makers

“I, along with colleagues from the World Health Organization, the Centers for Disease Control and Prevention in the USA, the provincial office of the Centers for Disease Control and Prevention, provincial clinicians, and the Free State Department of Health led by Dr David Motau, have been able to progress significantly in terms of evidence-based tools to assist provincial and national decision-makers during these turbulent times.”
“It does come at a cost, though, in that we have worked continuously since the lockdown, dedicating all our time and efforts to the department from all over to ensure that we are not part of some of the global statistics we have seen,” said Combrink. 

A paper written together with his supervisor, Dr Vukosi Marivate, has also been accepted by the Department of Higher Education and Training (DHET)-accredited Data Science Journal.  This paper is related to a framework for sharing public data to the public in a way that is useful, usable, and understandable. 

Ongoing projects

Combrink said it is hard to name all those who are/were involved in the great work done by the Free State Department of Health, but some of them include Dr Elizabeth Reji (Head of Department, Family Medicine), Dr Collin Noel (surgeon, senior lecturer at the UFS), Dr Sammy Mokoena (community health registrar, UFS), Dr Ming-Han Motloung (public health medicine specialist, senior lecturer, UFS), Dr Perpetual Chikobvu (Director: Information Management at the Department of Health, affiliated lecturer at the UFS), as well as Alfred Deacon (lecturer at the UFS), who have worked at some point during this short space of time on one of the many projects. 

Some of the projects include the following:

• A provincial database for screening and monitoring.
• A data pipeline and assembly of hospital information flow, liaised with the NICD, Vodacom, and the different district managers to ensure that the pipeline occurs in a timely manner.
• Digitised paper-based capturing tools for rapid data capturing and processing.
• Incorporated state-of-the-art visualisation tools to action data into useful information for decision-makers in certain areas.
• Provided both provincial and national projections, stress testing different scenarios using a variety of statistical, computational, and/or machine-learning approaches to add to the already existing projections of the Council for Scientific and Industrial Research (CSIR).
• Training healthcare professionals in the field to apply these tools within their own districts.
No easy task

“These aforementioned feats were by no means easy and are not completed yet, but we are getting there. In the foreseeable future, I will be working closely with national and international researchers to deploy a tool for hospital managers in the Free State that will assist them when we move from level 5 to any level below.”

“In addition to this, I am constantly providing support to the Free State Department of Health regarding any analysis required for decision-making purposes. The teams we work in comprise highly competent individuals with a passion for solving problems from multidisciplinary perspectives,” according to Combrink.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept