Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 May 2020 | Story Andre Damons | Photo Supplied
Dr Anthony Turton.

The major risk arising from COVID-19 is the fact that people can be infected but show no symptoms. It is these asymptomatic carriers that are the vectors accelerating infection in society. This is the central problem that has to date defied a solution.

Since the government cannot test every citizen in the country, the answer lies in sewage surveillance, says Dr Anthony Turton from the Centre for Environmental Management at the University of the Free State (UFS). 

Easier than testing millions of people
“We have 824 wastewater treatment works in South Africa. Each of these serves a population of known size. By taking samples of sewage according to a defined protocol, it is now technically possible to determine the viral load of the entire population in the catchment area of that sewage works. This data can be compared weekly, and from this we can determine if the total viral load is increasing or decreasing,” says Dr Turton.

According to him, this is much easier to do than the individual testing of millions of citizens, the results of which only give a snapshot of information relevant to those specific people at that precise moment in time. 
Dr Turton explains that the virus has a specific structure that gives it a number of properties. One of those properties is associated with the fatty outer coating, which is susceptible to detergents, ultraviolet light, and alcohol. This is known and forms part of the protocols to limit transmission. 

“What is known to scientists, but not yet apparent to the public, is that the virus is shed in human waste. This is known as viral shedding, and is now known to result in a traceable presence in both urine and faeces before a patient manifests with symptoms and after a patient has been treated. This does not mean that the virus is still infectious, although there is some mention of faecal-oral transmission in peer-reviewed literature, at least of the SARS virus.” 

"This is not yet fully understood, so the faecal-oral transmission pathway is mostly ignored by policy response, which is typically based on western premises such as a fully functional wastewater works. That may not be the case in developing countries, but the jury is still out on the faecal-oral transmission route,” explains Dr Turton.

What is of greater importance to society as a whole, Dr Turton continues, is the evolution of technology that is capable of detecting minute elements of the virus found in human waste. This is known in technical circles as sewage surveillance.
A person being tested has to go to a designated facility where they come into contact with other potential carriers; so even if they test negative today, this does not mean that they will not become infected on their way home.
“Such testing is costly, logistically complex, and is known to be out of reach even to advanced economies such as the USA, Britain, and Germany. But without testing, how can government still maintain its core mandate to protect citizens without destroying the economy by a perpetual lockdown?” 

“This is a dilemma that we need to confront, because the impact of economic meltdown can be bigger than the virus itself. The South African economy, which is already on its knees, cannot afford unemployment rates that might trigger social instability and unleash latent revolutionary zeal,” says Dr Turton.

A convenient way of gathering data
According to Dr Turton, samples are taken from the inlet to wastewater works where raw sewage is mixed. If more precise details are needed, sampling can occur on specific feeder lines, for example, from different suburbs representing different demographic samples of a larger and more complex whole. This ability gives sewage sampling a high level of nuance, because the pixel density of data built up over time is granular and precise. The important thing is that sampling must be regular and accurate, because each provides a single frame in the movie that we ultimately want our decision makers to watch. 

“Those samples are prepared in a specific way and sent to a laboratory capable of detecting precise elements of the RNA. Think of fingerprinting to understand this process. The Coronavirus has a precise fingerprint consisting of strands of carbon-based nucleotides arranged in a known sequence. It breaks down after the virus is destroyed but remains present like a bowl of minute pieces of spaghetti. Once detected and identified, it is then amplified or increased through a process known as PCR (polymerase chain reaction).” 

“In effect, this merely replicates what is originally present, like a photocopy machine. This is technically complex, and mistakes can be made each step of the way. However, if done properly, an accurate picture emerges. This picture is not about individuals who are positive or negative, but rather about the total viral load present in a defined cohort of people at a precise moment in time. It is not as granular as individual testing, but it is a convenient way of gathering data about the rate of change and specific epicentres of change or emerging hotspots.”

This technology has been successfully used in the Netherlands and is now being rolled out in other countries in the developed world. The right to use this technology has been secured for South Africa by the SA Business Water Chamber, a non-profit organisation, which entered into an agreement with KWR, the Dutch laboratory that has refined the technique. It is now being made available to any laboratory, privately owned, university owned or part of a national science council, with the intention of supporting decision-making by government. This will be of critical importance as the government decides to open up the economy, because sewage surveillance can detect a second wave before it is manifested as people reporting to doctors with symptoms.  

• The Business Water Council is a newly created structure for all entities involved in the business of water service provision, and is part of the Public Private Growth Initiative (PPGI) that aims to bring the private sector close to government in a collaborative effort to stimulate the economy and create jobs in a sustainable way. Funding entities have shown interest in supporting this process, given the strategic importance of sound decision-making for economic recovery after COVID-19 has passed. 

Any university with PCR capabilities can become a certified user of this technology, as can any commercial laboratory being rolled out as a humanitarian issue rather than a commercial one, even if it has an impact on the recovery of the economy.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept