Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Andre Damons | Photo Supplied
Heinrich Janse van Rensburg’s is a 5th year medical student from the University of the Free State whose photo was highly commended at the Imperial College London’s Global Creative Competition: Medical Student Responses to COVID-19.

A late-night photo taken through a window at the Pelonomi hospital by a final-year medical student from the University of the Free State (UFS) was highly commended at the first Global Creative Competition: Medical Student Responses to COVID-19.

The competition, held by the Imperial College London, received more than 600 entries from more than 52 countries. The competition was held to bring together the global community of medical students to submit their creative responses to COVID-19 and to provide a platform for them to reflect on their personal and professional experiences during this challenging time.

Medical students from around the world could enter in two categories; visual and literary, and the winners were announced during a Global Awards Ceremony on 14 October.

Meaning behind the photo

Heinrich Janse van Rensburg’s late -night photo highlights the economic inequality that persists in South Africa. The photo was taken from the Pelonomi Hospital which is located in Heidedal, Bloemfontein, and shows the old, forsaken Dutch Reformed church in the foreground, shacks in the background with smoke billowing from the dwellings, where up to six people live in one room trying to stay warm during winter. They are built so close to each other that there can be no talk of effective social distancing.

According to Janse van Rensburg the theme of inequality in the South African milieu is further shown in the striking contrast between light and dark in the picture. “And now, with the COVID-19 pandemic placing a massive burden on an already struggling healthcare system the inequality is even more visible,” says Janse van Rensburg.

 

Janse van Rensburg’s late-night photo taken from the Pelonomi Hospital in Heidedal, Bloemfontein, shows the economic inequality that persists in South Africa. The photo was highly commended at the Imperial College London’s Global Creative Competition for Medical Student Responses to COVID-19.


A little shocked 

He was a little shocked when he heard his photograph was highly commended. Janse van Rensburg says: “Imperial College London is a big institution and being an international competition I did not really expect a lot. There were participants from over 52 countries, and having seen some of the works that were submitted it feels special to be one of the students being noticed.”

Janse van Rensburg, who has never considered doing art, heard about the competition through the Faculty of Health Sciences platforms during lockdown level 5. He saw it as an opportunity to reflect, which has become even more imperative in times like these.

He says he does not go searching for art, but “notices” it from being conscious – something he thinks is important in medicine and life.

Value of creativity in promoting mental well-being

Dr Lynette van der Merwe, undergraduate medical programme director, School of Clinical Medicine, congratulated Janse van Rensburg, saying this commendation in an international competition underscores his talent and the value of creativity in promoting mental well-being.

“Heinrich’s artwork and showcase precisely what we aspire to develop in our exceptional UFS doctors-in-training: a professional with self-awareness, empathy and humanity.

“We initiated a Mental Health Awareness initiative and art competition in the School of Clinical Medicine in 2018 to promote creative expression as a means of supporting students’ mental health. Heinrich has won awards with his creative contributions every year, exhibiting his imaginative ability.”

Surgery and photography

Janse van Rensburg says he has always loved beautiful things and the meaning people attach to art is a good way to communicate that. He has applied for an internship at the Mitchells Plain hospital for when he completes his studies at the end of this year and is thinking of specialising in reconstructive or pediatrics surgery. Besides that, he would like to tap into his creative side and continue with the photography.

  • Watch the video of the winners here

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept