Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Andre Damons | Photo Supplied
Heinrich Janse van Rensburg’s is a 5th year medical student from the University of the Free State whose photo was highly commended at the Imperial College London’s Global Creative Competition: Medical Student Responses to COVID-19.

A late-night photo taken through a window at the Pelonomi hospital by a final-year medical student from the University of the Free State (UFS) was highly commended at the first Global Creative Competition: Medical Student Responses to COVID-19.

The competition, held by the Imperial College London, received more than 600 entries from more than 52 countries. The competition was held to bring together the global community of medical students to submit their creative responses to COVID-19 and to provide a platform for them to reflect on their personal and professional experiences during this challenging time.

Medical students from around the world could enter in two categories; visual and literary, and the winners were announced during a Global Awards Ceremony on 14 October.

Meaning behind the photo

Heinrich Janse van Rensburg’s late -night photo highlights the economic inequality that persists in South Africa. The photo was taken from the Pelonomi Hospital which is located in Heidedal, Bloemfontein, and shows the old, forsaken Dutch Reformed church in the foreground, shacks in the background with smoke billowing from the dwellings, where up to six people live in one room trying to stay warm during winter. They are built so close to each other that there can be no talk of effective social distancing.

According to Janse van Rensburg the theme of inequality in the South African milieu is further shown in the striking contrast between light and dark in the picture. “And now, with the COVID-19 pandemic placing a massive burden on an already struggling healthcare system the inequality is even more visible,” says Janse van Rensburg.

 

Janse van Rensburg’s late-night photo taken from the Pelonomi Hospital in Heidedal, Bloemfontein, shows the economic inequality that persists in South Africa. The photo was highly commended at the Imperial College London’s Global Creative Competition for Medical Student Responses to COVID-19.


A little shocked 

He was a little shocked when he heard his photograph was highly commended. Janse van Rensburg says: “Imperial College London is a big institution and being an international competition I did not really expect a lot. There were participants from over 52 countries, and having seen some of the works that were submitted it feels special to be one of the students being noticed.”

Janse van Rensburg, who has never considered doing art, heard about the competition through the Faculty of Health Sciences platforms during lockdown level 5. He saw it as an opportunity to reflect, which has become even more imperative in times like these.

He says he does not go searching for art, but “notices” it from being conscious – something he thinks is important in medicine and life.

Value of creativity in promoting mental well-being

Dr Lynette van der Merwe, undergraduate medical programme director, School of Clinical Medicine, congratulated Janse van Rensburg, saying this commendation in an international competition underscores his talent and the value of creativity in promoting mental well-being.

“Heinrich’s artwork and showcase precisely what we aspire to develop in our exceptional UFS doctors-in-training: a professional with self-awareness, empathy and humanity.

“We initiated a Mental Health Awareness initiative and art competition in the School of Clinical Medicine in 2018 to promote creative expression as a means of supporting students’ mental health. Heinrich has won awards with his creative contributions every year, exhibiting his imaginative ability.”

Surgery and photography

Janse van Rensburg says he has always loved beautiful things and the meaning people attach to art is a good way to communicate that. He has applied for an internship at the Mitchells Plain hospital for when he completes his studies at the end of this year and is thinking of specialising in reconstructive or pediatrics surgery. Besides that, he would like to tap into his creative side and continue with the photography.

  • Watch the video of the winners here

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept