Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 November 2020 | Story Dr Nitha Ramnath

 

Interdisciplinarity in Action


Lunchtime learning webinar on


The  Intersection between Science and Visual Arts


In this webinar, Prof Willem Boshoff and Prof Louis Scott, both from the University of the Free State, will discuss the intersection between science and the visual arts. The webinar will explore how new levels of understanding may emerge when seemingly unrelated fields of interest intersect, supported by the ideas we may find in the endless diversity of nature.

This webinar is part of a series of three webinars on Interdisciplinarity presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts. 
 
Date: Tuesday 8 December 2020
Topic: The intersection between science and visual arts 
Time: 13:00-13:45 (SAST)
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 7 December 2020 
Platform: Microsoft Teams

Introduction and welcome
 
Prof Corli Witthuhn – Vice-Rector: Research at the University of the Free State 

Presenters

Prof Willem Boshoff
Willem Boshoff is a Senior Professor in Fine Arts at the University of the Free State. As a conceptual artist, he engages primarily with language. Notably, his works have included the writing of several themed dictionaries, most often made accessible to a broad audience in the form of large art installations. His broad interdisciplinary interests, including the fields of botany, music, and lexicography, have over the years led to the development of a digital research archive, which he recently donated to the University of the Free State.  Prof Boshoff’s work is exhibited extensively, both locally and abroad, and has been included in major private collections and museums. Recently, he became the first South African artist to be awarded an A2 rating by the National Research Foundation (NRF). 

Prof Louis Scott
Prof Louis Scott is a retired professor and mentor in the Department of Plant Sciences at the UFS, with an interest in visual arts. He studies fossil pollen in natural lake, cave, swamp, and fossil dung deposits. He attempts to reconstruct our heritage associated with African prehistory through environmental history, including natural long-term processes of change. Prof Scott is widely published in this field, serves on the editorial boards of international journals, and has a B-rating with the National Research Foundation. 


News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept