Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 November 2020 | Story Dr Nitha Ramnath

 

Interdisciplinarity in Action


Lunchtime learning webinar on


The  Intersection between Science and Visual Arts


In this webinar, Prof Willem Boshoff and Prof Louis Scott, both from the University of the Free State, will discuss the intersection between science and the visual arts. The webinar will explore how new levels of understanding may emerge when seemingly unrelated fields of interest intersect, supported by the ideas we may find in the endless diversity of nature.

This webinar is part of a series of three webinars on Interdisciplinarity presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts. 
 
Date: Tuesday 8 December 2020
Topic: The intersection between science and visual arts 
Time: 13:00-13:45 (SAST)
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 7 December 2020 
Platform: Microsoft Teams

Introduction and welcome
 
Prof Corli Witthuhn – Vice-Rector: Research at the University of the Free State 

Presenters

Prof Willem Boshoff
Willem Boshoff is a Senior Professor in Fine Arts at the University of the Free State. As a conceptual artist, he engages primarily with language. Notably, his works have included the writing of several themed dictionaries, most often made accessible to a broad audience in the form of large art installations. His broad interdisciplinary interests, including the fields of botany, music, and lexicography, have over the years led to the development of a digital research archive, which he recently donated to the University of the Free State.  Prof Boshoff’s work is exhibited extensively, both locally and abroad, and has been included in major private collections and museums. Recently, he became the first South African artist to be awarded an A2 rating by the National Research Foundation (NRF). 

Prof Louis Scott
Prof Louis Scott is a retired professor and mentor in the Department of Plant Sciences at the UFS, with an interest in visual arts. He studies fossil pollen in natural lake, cave, swamp, and fossil dung deposits. He attempts to reconstruct our heritage associated with African prehistory through environmental history, including natural long-term processes of change. Prof Scott is widely published in this field, serves on the editorial boards of international journals, and has a B-rating with the National Research Foundation. 


News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept