Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 November 2020 | Story Ruan Bruwer | Photo Varsity Sports
Lefébre Rademan, the country’s top student netball player in 2019, has been snatched up by English netball club London Pulse to play in England in 2021.

 

Attempting to become an even better netballer, former Kovsies netball captain Lefébre Rademan decided to jet off to England to play in their league.

Rademan was contracted by London Pulse to compete in the European Superleague in 2021. She will be the fourth Kovsie after Maryka Holtzhausen (2015 and 2018-2019), Karla Pretorius (2016), and Khanyisa Chawane (2020) to play in the league.

Rademan said it was an easy decision, even though it will be far and a long time away from home. The league runs from February to July, with a pre-season in December. She will continue with her master’s degree at the University of the Free State next year.

“I am not going to play netball forever and such an opportunity doesn’t come often. Having competed against England, New Zealand, and Jamaica earlier in the year, I realised they play at a much higher level and if I want to improve and become the best, I would also need to move to a next level.”

“As a goal attack, having Protea teammate Sigi Burger (goal shooter) at the same club, will be an advantage for both of us and for the Proteas as a combination.”

Rademan has had a great past two years, making her Protea debut (12 tests in total) and receiving a number of accolades, such as the Varsity Netball Player of the Tournament in 2019.

In the Telkom Netball League in October, captaining the Free State Crinums, she was named Shooter of the Tournament. She was Player of the Match twice. Her goal average of 88,1% was the highest in the competition.

“Last year was such a good year for me personally, but that remains in the past. You can’t become complacent. I want to keep working hard and become a much better player,” Rademan said.

 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept