Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Thabo Kessah
Prof Moffett’s latest offering collates hundreds of mountain research material into one accessible reference book.

Prof Rodney Moffett recently published a new book focusing on various scientific articles published between 1808 and 2019. The book, A Scientific Bibliography of the Drakensberg, Maloti and Adjacent Lowlands, has 534 pages and covers material appearing in accredited journals, plus unpublished but traceable reports, documents, presentations, and dissertations.

“The scientific articles range from palaeobotany with 17 entries, to rock art with 502 entries, as well as 252 theses and dissertations,” said Prof Moffett.

He said it took 18 months to compile the book, typing the manuscript himself – mostly at night.

In the foreword, Dr Ralph Clark, Director: Afromontane Research Unit (ARU), says: “This bibliography is a labour of love, and will inspire a new generation to take up the baton for excellent research in this fantastic mountain system. We are proud to publish this under the ARU banner as a contribution to growing and consolidating mountain-passionate relationships in Southern Africa, and to encourage our journey towards developing a holistic understanding and sustainable use of these iconic mountain landscapes.” 

Other books

Prof Moffett is an honorary research fellow in the Department of Plant Sciences at the University of the Free State, and an associate of the Afromontane Research Unit on the UFS Qwaqwa Campus. He was previously Professor of Botany on the Qwaqwa Campus when it was part of the University of the North, retiring in 2000. Since then, he has remained active, publishing scholarly works on ethnobotany and other natural history subjects.

His four recent books, also published by Sun Press, are: Sesotho Plant and Animal Names and Plants used by the Basotho (2010), A Biographical Dictionary of Contributors to the Natural History of the Free State and Lesotho (2014), Basotho Medicinal Plants – Meriana ya Dimela tsa Basotho (2016), and A Field Guide to the Clarens Village Conservancy (2018). A second revised edition of Meriana ya Dimela tsa Basotho – 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept