Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Thabo Kessah
Prof Moffett’s latest offering collates hundreds of mountain research material into one accessible reference book.

Prof Rodney Moffett recently published a new book focusing on various scientific articles published between 1808 and 2019. The book, A Scientific Bibliography of the Drakensberg, Maloti and Adjacent Lowlands, has 534 pages and covers material appearing in accredited journals, plus unpublished but traceable reports, documents, presentations, and dissertations.

“The scientific articles range from palaeobotany with 17 entries, to rock art with 502 entries, as well as 252 theses and dissertations,” said Prof Moffett.

He said it took 18 months to compile the book, typing the manuscript himself – mostly at night.

In the foreword, Dr Ralph Clark, Director: Afromontane Research Unit (ARU), says: “This bibliography is a labour of love, and will inspire a new generation to take up the baton for excellent research in this fantastic mountain system. We are proud to publish this under the ARU banner as a contribution to growing and consolidating mountain-passionate relationships in Southern Africa, and to encourage our journey towards developing a holistic understanding and sustainable use of these iconic mountain landscapes.” 

Other books

Prof Moffett is an honorary research fellow in the Department of Plant Sciences at the University of the Free State, and an associate of the Afromontane Research Unit on the UFS Qwaqwa Campus. He was previously Professor of Botany on the Qwaqwa Campus when it was part of the University of the North, retiring in 2000. Since then, he has remained active, publishing scholarly works on ethnobotany and other natural history subjects.

His four recent books, also published by Sun Press, are: Sesotho Plant and Animal Names and Plants used by the Basotho (2010), A Biographical Dictionary of Contributors to the Natural History of the Free State and Lesotho (2014), Basotho Medicinal Plants – Meriana ya Dimela tsa Basotho (2016), and A Field Guide to the Clarens Village Conservancy (2018). A second revised edition of Meriana ya Dimela tsa Basotho – 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept