Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Thabo Kessah | Photo Thabo Kessah
Prof Geofrey Mukwada says funding from the US Embassy and Consulates in South Africa will reinforce the ARU mandate.

The University of the Free State (UFS) will further strengthen its ties with the Appalachian State University in the next two academic years through a mountain-to-mountain research project funded by the US Embassy and Consulates in South Africa.

The R8 million project between the UFS and the US institution will cover the two master’s degree programmes in underdeveloped niche areas, meteorological weather stations, leadership capacity building for black women in academia, and doctoral research projects. Qwaqwa Campus departments that will be involved are Physics, Geography, Community Development, and the ARU.

Talking about this collaboration, the project leader, Prof Geofrey Mukwada, said it would bring together researchers from both the UFS and Appalachian State University and enable them to work together to develop what is currently an underdeveloped research niche, i.e. mountain studies. 

“This project will reinforce the mandate of the Afromontane Research Unit (ARU). It will provide the basis for a long-term development agenda through training and infrastructure development. For instance, the project will fund the implementation of two master’s degree programmes – the MSc in Mountain Environments and the MA in Community Development – which are long-term projects,” he said. 

“It will also support innovation in climate change research. Through this project, it will be possible to receive climate data from weather stations that are situated in distant, isolated, and generally inaccessible locations without travelling to those locations. We will be able to understand how the climate of the region is changing and assist in developing adaptation measures and decisions that are applicable to agriculture, water, tourism, environment, and other sectors. This will enhance the capacity of the ARU to contribute to the development of research in mountain environments,” he added. 

There will be a virtual launch of the project on Tuesday 10 November 2020 at 15:00 (CAT).

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept