Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 November 2020 | Story Thabo Kessah | Photo Thabo Kessah
Prof Geofrey Mukwada says funding from the US Embassy and Consulates in South Africa will reinforce the ARU mandate.

The University of the Free State (UFS) will further strengthen its ties with the Appalachian State University in the next two academic years through a mountain-to-mountain research project funded by the US Embassy and Consulates in South Africa.

The R8 million project between the UFS and the US institution will cover the two master’s degree programmes in underdeveloped niche areas, meteorological weather stations, leadership capacity building for black women in academia, and doctoral research projects. Qwaqwa Campus departments that will be involved are Physics, Geography, Community Development, and the ARU.

Talking about this collaboration, the project leader, Prof Geofrey Mukwada, said it would bring together researchers from both the UFS and Appalachian State University and enable them to work together to develop what is currently an underdeveloped research niche, i.e. mountain studies. 

“This project will reinforce the mandate of the Afromontane Research Unit (ARU). It will provide the basis for a long-term development agenda through training and infrastructure development. For instance, the project will fund the implementation of two master’s degree programmes – the MSc in Mountain Environments and the MA in Community Development – which are long-term projects,” he said. 

“It will also support innovation in climate change research. Through this project, it will be possible to receive climate data from weather stations that are situated in distant, isolated, and generally inaccessible locations without travelling to those locations. We will be able to understand how the climate of the region is changing and assist in developing adaptation measures and decisions that are applicable to agriculture, water, tourism, environment, and other sectors. This will enhance the capacity of the ARU to contribute to the development of research in mountain environments,” he added. 

There will be a virtual launch of the project on Tuesday 10 November 2020 at 15:00 (CAT).

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept