Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 November 2020 | Story Dr Nitha Ramnath | Photo Supplied
The UFS team, from the left: Monique Harcourt, Dawid Potgieter, Atalanta Watson, and Zoe Travers.

One of two teams from the University of the Free State (UFS) performed exceptionally well and made it to the top four in the extremely competitive local Chartered Financial Analyst (CFA) University Challenge.

The CFA Society South Africa recently hosted the 12th annual local edition of the CFA Institute University Research Challenge. The research challenge is an annual global competition in equity research hosted by the CFA Institute, a global representative body for chartered financial analyst (CFA) charter holders. During the research challenge, teams from different universities locally and internationally compete on three levels – more than 1 000 universities compete annually.  

"Taking part in the CFA challenge was a wonderful opportunity where we learnt new skills and gained industry-specific experience, which will be invaluable to us as we graduate and embark on our journey as professionals. We are proud to have represented Kovsies in the finals and this proved to us, once again, that hard work pays off, " said the UFS team.

Two teams of four were selected to represent the UFS during the 2020 challenge. Team selection was based on students’ performance during the first semester of their BCom Honours (specialisation in Financial Economics and Investment Management) in the Department of Economics and Finance. During the challenge, students assumed the role of a (sell-side) research analyst and had to write a concise report that covered various aspects related to the company’s business activities, structure, governance, finances, etc., which was presented via Zoom to a panel of judges from the CFA Society South Africa. 

Dr Ivan van der Merwe, the team’s adviser from the Department of Economics and Finance, commented: “It was a pleasure to work with a team that showed so much dedication and was willing to go the extra mile. The experience they gained during this challenge will stand them in good stead and it was a real confidence builder for them to successfully complete a very stressful live presentation and subsequent question session. They made us proud and set the standard for aspiring Finance students at Kovsies.” 

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept