Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 November 2020 | Story Dr Nitha Ramnath | Photo Supplied
The UFS team, from the left: Monique Harcourt, Dawid Potgieter, Atalanta Watson, and Zoe Travers.

One of two teams from the University of the Free State (UFS) performed exceptionally well and made it to the top four in the extremely competitive local Chartered Financial Analyst (CFA) University Challenge.

The CFA Society South Africa recently hosted the 12th annual local edition of the CFA Institute University Research Challenge. The research challenge is an annual global competition in equity research hosted by the CFA Institute, a global representative body for chartered financial analyst (CFA) charter holders. During the research challenge, teams from different universities locally and internationally compete on three levels – more than 1 000 universities compete annually.  

"Taking part in the CFA challenge was a wonderful opportunity where we learnt new skills and gained industry-specific experience, which will be invaluable to us as we graduate and embark on our journey as professionals. We are proud to have represented Kovsies in the finals and this proved to us, once again, that hard work pays off, " said the UFS team.

Two teams of four were selected to represent the UFS during the 2020 challenge. Team selection was based on students’ performance during the first semester of their BCom Honours (specialisation in Financial Economics and Investment Management) in the Department of Economics and Finance. During the challenge, students assumed the role of a (sell-side) research analyst and had to write a concise report that covered various aspects related to the company’s business activities, structure, governance, finances, etc., which was presented via Zoom to a panel of judges from the CFA Society South Africa. 

Dr Ivan van der Merwe, the team’s adviser from the Department of Economics and Finance, commented: “It was a pleasure to work with a team that showed so much dedication and was willing to go the extra mile. The experience they gained during this challenge will stand them in good stead and it was a real confidence builder for them to successfully complete a very stressful live presentation and subsequent question session. They made us proud and set the standard for aspiring Finance students at Kovsies.” 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept