Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 November 2020 | Story Dr Nitha Ramnath

In this webinar, Prof Brownhilder Neneh of the University of the Free State, and Christopher Rothmann, co-founder of LiquidCulture, discuss the intersection between the two fields of science and entrepreneurship, and entrepreneurship and the university curriculum from an interdisciplinary perspective. The webinar will provide insight into entrepreneurship at universities, particularly the UFS, advancing entrepreneurship development and entrepreneurship-related programmes that are student focused, and illustrate the critical role that entrepreneurship plays in the lives of students.

This webinar is part of a series of three webinars on Interdisciplinarity that is presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts.  

Date: Tuesday 24 November 2020
Topic: The intersection between science and entrepreneurship 
Time: 13:00-13:45 (SAST)
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 23 November 2020 
Platform: Microsoft Teams

Introduction and welcome

Prof Corli Witthuhn 
Vice-Rector: Research at the University of the Free State 


Presenters

Prof Brownhilder Neneh 

Prof Neneh is Associate Professor and Academic Chair (HOD) in the Department of Business Management at the University of the Free State.  She is an NRF-rated researcher in the field of entrepreneurship and small business development. Her research is primarily based in the field of entrepreneurship, where she looks at different aspects of a business venture – from business gestation activities to performance, growth, and exit.  She also focuses on some niche areas in entrepreneurship, such as women and student entrepreneurship. She was a 2019 winner of the Emerald Literati Awards in the category Outstanding and Highly Commended papers. 

Christopher Rothmann – Co-founder of LiquidCulture

Liquid Culture (LC) was started by Christopher Rothmann and Dr Errol Cason in the UFS Department of Microbial, Biochemical and Food Biotechnology in 2018. They produce yeast in its purest liquid form. LC is the only company in Africa to do so. Their yeast is mainly used by breweries for the fermentation of beer and they have since also branched out to the baking and distillery industries. Christopher was awarded the joint runner-up position in the Existing Tech Business category of the 2019 Entrepreneurship Intervarsity.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept