Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 November 2020 | Story Dr Nitha Ramnath

In this webinar, Prof Brownhilder Neneh of the University of the Free State, and Christopher Rothmann, co-founder of LiquidCulture, discuss the intersection between the two fields of science and entrepreneurship, and entrepreneurship and the university curriculum from an interdisciplinary perspective. The webinar will provide insight into entrepreneurship at universities, particularly the UFS, advancing entrepreneurship development and entrepreneurship-related programmes that are student focused, and illustrate the critical role that entrepreneurship plays in the lives of students.

This webinar is part of a series of three webinars on Interdisciplinarity that is presented from November to December 2020 via Microsoft Teams for a duration of 45 minutes each. The webinar topics in the series explore the intersection between Neuroscience and Music, between Science and Entrepreneurship, and between Science and Visual Arts.  

Date: Tuesday 24 November 2020
Topic: The intersection between science and entrepreneurship 
Time: 13:00-13:45 (SAST)
RSVP: Alicia Pienaar, pienaaran1@ufs.ac.za by 23 November 2020 
Platform: Microsoft Teams

Introduction and welcome

Prof Corli Witthuhn 
Vice-Rector: Research at the University of the Free State 


Presenters

Prof Brownhilder Neneh 

Prof Neneh is Associate Professor and Academic Chair (HOD) in the Department of Business Management at the University of the Free State.  She is an NRF-rated researcher in the field of entrepreneurship and small business development. Her research is primarily based in the field of entrepreneurship, where she looks at different aspects of a business venture – from business gestation activities to performance, growth, and exit.  She also focuses on some niche areas in entrepreneurship, such as women and student entrepreneurship. She was a 2019 winner of the Emerald Literati Awards in the category Outstanding and Highly Commended papers. 

Christopher Rothmann – Co-founder of LiquidCulture

Liquid Culture (LC) was started by Christopher Rothmann and Dr Errol Cason in the UFS Department of Microbial, Biochemical and Food Biotechnology in 2018. They produce yeast in its purest liquid form. LC is the only company in Africa to do so. Their yeast is mainly used by breweries for the fermentation of beer and they have since also branched out to the baking and distillery industries. Christopher was awarded the joint runner-up position in the Existing Tech Business category of the 2019 Entrepreneurship Intervarsity.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept