Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2020 | Story Leonie Bolleurs | Photo Supplied
Disinfectants
Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

SARS-CoV-2, an enveloped coronavirus, is susceptible to most disinfectants. Therefore, the majority of disinfectants, including those containing 70% ethanol, should be able to kill the virus fairly quickly.

Nevertheless, it was found that some bacteria are highly resistant to several commercially available disinfectants. These bacteria are currently still quite rare, and the work of the Veterinary Biotechnology group at the University of the Free State (UFS) aims to prevent the development of more highly resistant bacteria.

The research group in the Department of Microbial, Biochemical and Food Biotechnology is working on disinfectant resistance. They recently published an article, ‘Molecular basis of bacterial disinfectant resistance’.

Group members include: Prof Robert Bragg, professor in the department; Dr Charlotte Boucher, research associate; Samantha Mc Carlie, master’s student and laboratory manager; master’s students, Twyne Skein and Gunther Staats; honours students, Carlo Visser, Bernadette Belter, Boudine van der Walt, Jacky Huang, and Mart-Louise van Zyl; and an NRF intern, Gloria Kankam.

According to Mc Carlie, the work being done on disinfectant resistance is largely attributable to the major issues currently experienced with antibiotic resistance.

“Antibiotic resistance is becoming one of the biggest life-threatening challenges of our time – even overshadowing the current COVID-19 pandemic – as multidrug-resistant infections are becoming increasingly difficult to treat. Bacterial infections that are present in hospitals and agriculture are becoming unresponsive to many of the antibiotics currently in use, marking the start of a post-antibiotic era.”

It is predicted that by 2050, antimicrobial resistance could lead to as many deaths as cancer causes today and could account for between 10 million and 50 million deaths per year.

Lack of proper biosecurity

Mc Carlie says the resistance to antibiotics is spreading rapidly due to a lack of proper biosecurity measures in the food and agricultural industry as well as in the hospital environment, even if the COVID-19 pandemic has gone a long way towards increasing the awareness of hospital staff to the importance of good biosecurity. Millions of rands are lost every year due to multidrug-resistant infections in the dairy and poultry industries of South Africa, and superbugs are present in almost every major hospital in the country.

“Currently, the best viable protection we have against bacteria is biosecurity and disinfectants. Biosecurity relies heavily on the use of disinfectants to control bacterial growth. This makes it only more troubling that disinfectant resistance is emerging at an alarming rate.”

She believes it is important to understand the mechanisms of resistance in order to combat resistance to disinfectants. “Once the mechanisms are identified, possible solutions can be investigated.”

The research group is currently monitoring disinfectant resistance, looking at which microorganisms are resistant to which disinfectants. They take environmental samples and test the levels of disinfectant resistance to observe the development and spread thereof.

Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

“As we learn more about these highly resistant isolates, it will direct day-to-day treatment of multidrug-resistant infections and hopefully aid in the fight against antibiotic and disinfectant resistance,” says Mc Carlie.

The dangers of over-prescribing

“Resistance to antimicrobials such as antibiotics and disinfectants is a natural occurrence. We did not invent antibiotics, we discovered them, and so bacterial resistance has been around for as long as antibiotics have – as a survival strategy.”

“However, the widespread use of antimicrobials creates selective pressure for those microorganisms that are resistant to the antimicrobial being used. Over-prescribing and improper use of antibiotics has led to widespread antibiotic resistance. We expect the same trend to be seen with disinfectant resistance in the near future,” says Mc Carlie.

She urges the public to take note that disease-causing microorganisms can become resistant to antibiotics and disinfectants if they are not used correctly. A course of antibiotics should always be taken at the correct time and until the last dose. In the same way, disinfectants should be used at the recommended level and not diluted below that level.

These resistant organisms are causing major issues in the agricultural and medical industries, but this effect has not been seen in households yet. As long as disinfectants are used correctly, most will be able to kill the novel coronavirus.

There is, however, a need to establish tests on the efficacy of the massive number of ‘hand sanitisers’ that are now suddenly available.

According to Prof Bragg, existing disinfectants and hand sanitisers have been specifically tested against SARS-CoV-2 and have been found to be effective. He says the undergraduate students in the department will be evaluating a wide range of different hand sanitisers as part of their practical training.

Mc Carlie adds that the excessive use of poor-quality disinfectants as hand sanitisers can result in bacteria developing resistance to these disinfectants. “It is therefore very important that reliable high-quality disinfectants are used as hand sanitisers during this COVID-19 crisis, otherwise we will be replacing one crisis with a potentially even bigger crisis.”

Mc Carlie believes there is a need to start looking at alternatives to control bacterial growth. “Disinfectants are currently the only viable option, and if these microorganisms become resistant to disinfectants as well, we will have nowhere else to turn,” she says.

News Archive

New name and format for UFS Rag
2017-11-02

Description: Rag new format  Tags: Rag new format  

The community garden project will help individual student communities
to begin and maintain their own vegetable gardens to address food insecurity
within their own environment.
Photo: Pixabay

Get ready for celebrating with a cause at the University of the Free State (UFS). After an external review and internal consultation process, our “giving back” will get a fresh new look. Our RAG, as you know it, will have a new name and format going forward. 

Innovative thinking will align the UFS Student Affairs, RAG Community Services (RCS), Community Engagement (CE), and Services Learning (SL) to deliver suitable contributions for current community needs. We will guide the alignment process with an integrated framework for learning and developmental outcomes. If the RCS, CE, SL, and Student Affairs align their specific programmes and activities to achieve the same developmental outcomes, we believe that the collective effect will be enhanced. You get further if you pull in the same direction, rather than various good-intentioned movements on different routes. 
 
Stronger together An Institutional Committee for Civic and Social Responsibility (CSR) will act as the overarching structure for accountability, alignment, and advice to the RCS, CE and SL divisions. In a collective effort, four exciting programmes will take flight.

1 Schools project for first-year students Mentored by senior students, groups of first-year students will be assigned to, and participate in local school projects. Students will learn to solve problems and work together in small groups as they collaborate on a specific community project involving primary or secondary schools in the Mangaung region. 

2 Community gardens This project will help individual student communities to begin and maintain their own vegetable gardens to address food insecurity within their own environment.

3 Eco-vehicle project for senior students The aim of the eco-vehicle project is to create an interdisciplinary experience. Undergraduate senior students from a Student Life College (SLC) can work together to build an eco-vehicle from waste material. The track day, along with creative pit stops, will take place on 16 February 2018, preceding the Community celebration of 17 February 2018.

4 Community celebration To foster good relationships between the UFS and the community, we aim to host an annual celebration that will be open to the broader Mangaung community. The celebrations will kick off on the morning of 17 February 2018 with a business relay and a showcase of the eco-vehicles. The festive day will conclude with an evening music concert. 

We have yet to rename “RAG”, and while this creative process is brewing, you can look forward to paying it forward with value! Any suggestions with regard to a new name for our new process can be forwarded to scheepersk@ufs.ac.za 

Name suggestions will be accepted until 30 November 2017.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept