Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2020 | Story Leonie Bolleurs | Photo Supplied
Disinfectants
Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

SARS-CoV-2, an enveloped coronavirus, is susceptible to most disinfectants. Therefore, the majority of disinfectants, including those containing 70% ethanol, should be able to kill the virus fairly quickly.

Nevertheless, it was found that some bacteria are highly resistant to several commercially available disinfectants. These bacteria are currently still quite rare, and the work of the Veterinary Biotechnology group at the University of the Free State (UFS) aims to prevent the development of more highly resistant bacteria.

The research group in the Department of Microbial, Biochemical and Food Biotechnology is working on disinfectant resistance. They recently published an article, ‘Molecular basis of bacterial disinfectant resistance’.

Group members include: Prof Robert Bragg, professor in the department; Dr Charlotte Boucher, research associate; Samantha Mc Carlie, master’s student and laboratory manager; master’s students, Twyne Skein and Gunther Staats; honours students, Carlo Visser, Bernadette Belter, Boudine van der Walt, Jacky Huang, and Mart-Louise van Zyl; and an NRF intern, Gloria Kankam.

According to Mc Carlie, the work being done on disinfectant resistance is largely attributable to the major issues currently experienced with antibiotic resistance.

“Antibiotic resistance is becoming one of the biggest life-threatening challenges of our time – even overshadowing the current COVID-19 pandemic – as multidrug-resistant infections are becoming increasingly difficult to treat. Bacterial infections that are present in hospitals and agriculture are becoming unresponsive to many of the antibiotics currently in use, marking the start of a post-antibiotic era.”

It is predicted that by 2050, antimicrobial resistance could lead to as many deaths as cancer causes today and could account for between 10 million and 50 million deaths per year.

Lack of proper biosecurity

Mc Carlie says the resistance to antibiotics is spreading rapidly due to a lack of proper biosecurity measures in the food and agricultural industry as well as in the hospital environment, even if the COVID-19 pandemic has gone a long way towards increasing the awareness of hospital staff to the importance of good biosecurity. Millions of rands are lost every year due to multidrug-resistant infections in the dairy and poultry industries of South Africa, and superbugs are present in almost every major hospital in the country.

“Currently, the best viable protection we have against bacteria is biosecurity and disinfectants. Biosecurity relies heavily on the use of disinfectants to control bacterial growth. This makes it only more troubling that disinfectant resistance is emerging at an alarming rate.”

She believes it is important to understand the mechanisms of resistance in order to combat resistance to disinfectants. “Once the mechanisms are identified, possible solutions can be investigated.”

The research group is currently monitoring disinfectant resistance, looking at which microorganisms are resistant to which disinfectants. They take environmental samples and test the levels of disinfectant resistance to observe the development and spread thereof.

Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

“As we learn more about these highly resistant isolates, it will direct day-to-day treatment of multidrug-resistant infections and hopefully aid in the fight against antibiotic and disinfectant resistance,” says Mc Carlie.

The dangers of over-prescribing

“Resistance to antimicrobials such as antibiotics and disinfectants is a natural occurrence. We did not invent antibiotics, we discovered them, and so bacterial resistance has been around for as long as antibiotics have – as a survival strategy.”

“However, the widespread use of antimicrobials creates selective pressure for those microorganisms that are resistant to the antimicrobial being used. Over-prescribing and improper use of antibiotics has led to widespread antibiotic resistance. We expect the same trend to be seen with disinfectant resistance in the near future,” says Mc Carlie.

She urges the public to take note that disease-causing microorganisms can become resistant to antibiotics and disinfectants if they are not used correctly. A course of antibiotics should always be taken at the correct time and until the last dose. In the same way, disinfectants should be used at the recommended level and not diluted below that level.

These resistant organisms are causing major issues in the agricultural and medical industries, but this effect has not been seen in households yet. As long as disinfectants are used correctly, most will be able to kill the novel coronavirus.

There is, however, a need to establish tests on the efficacy of the massive number of ‘hand sanitisers’ that are now suddenly available.

According to Prof Bragg, existing disinfectants and hand sanitisers have been specifically tested against SARS-CoV-2 and have been found to be effective. He says the undergraduate students in the department will be evaluating a wide range of different hand sanitisers as part of their practical training.

Mc Carlie adds that the excessive use of poor-quality disinfectants as hand sanitisers can result in bacteria developing resistance to these disinfectants. “It is therefore very important that reliable high-quality disinfectants are used as hand sanitisers during this COVID-19 crisis, otherwise we will be replacing one crisis with a potentially even bigger crisis.”

Mc Carlie believes there is a need to start looking at alternatives to control bacterial growth. “Disinfectants are currently the only viable option, and if these microorganisms become resistant to disinfectants as well, we will have nowhere else to turn,” she says.

News Archive

Project aims to boost science pass rate
2009-01-19

 
Attending the launch of the HP grant of about R1 million to the UFS are, from the left: Mr Leon Erasmus, Country Manager for HP Technology Services in South Africa, Prof. Teuns Verschoor, Acting Rector of the UFS, and Mr Cobus van Breda, researcher at the UFS's Centre for Education Development and manager of the project.
Photo: Lacea Loader
The University of the Free State (UFS), in partnership with computer giant Hewlett Packard (HP), wants to boost the pass rate of its science students by using mobile technology.

The UFS is one of only 15 universities across Europe, the Middle East and Africa and the only university in South Africa to receive a grant from HP to promote mobile technology for teaching in higher education valued at USD$ 100,000 (or about R1 million). Altogether 80 universities from 28 countries applied for the grant.

“Last year HP invited a number of selected universities to submit proposals in which they had to explain how they are going to utilise mobile technologies in the redesign of a course that is presented at the university. The proposal of the Centre for Education Development (CED) at the UFS entitled “Understanding Physics through data logging” was accepted,” says Mr Cobus van Breda, researcher at CED and manager of the project.

According to Mr van Breda, students who do not meet the entrance requirements for the three-year B.Sc. programme have to enroll for the four-year curriculum with the first year actually preparing them for the three-year curriculum.

In order to increase the success rate of these students, the project envisages to enhance their understanding of science principles by utilising the advantages of personal computer (PC) tablet technology and other information and communication technologies (ICT) to support effective teaching and learning methodology.

“By using PC tablet technology in collaboration with data-logging software, a personal response system, the internet and other interactive ICT applications, an environment different from a traditional teaching milieu is created. This will consequently result in a different approach to addressing students’ learning issues,” says Mr van Breda.

The pilot project was launched during the fourth term of 2008 when 130 first-year B.Sc. students (of the four-year curriculum) did the practical component of the physics section of the Concepts in General Science (CGS) module by conducting experiments in a computerised laboratory, using data-logging software amongst other technology applications. “The pilot project delivered good results and students found the interactive application very helpful,” says Mr van Breda.

”The unique feature of the latter is the fact that real-life data can be collected with electronic sensors and instantly presented as computer graphs. It can then be analysed and interpreted immediately, thus more time can be devoted to actual Science principles and phenomena and less time on time-consuming data processing,” says Mr van Breda.

The CGS module can be seen as a prerequisite for further studies in physics at university level and in this regard it is of essence to keep looking for new models of learning and teaching which can result in student success. This year the theoretical and practical component of the physics section of the CGS programme will be done in an integrated manner.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 January 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept