Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 October 2020 | Story Leonie Bolleurs | Photo Supplied
Disinfectants
Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

SARS-CoV-2, an enveloped coronavirus, is susceptible to most disinfectants. Therefore, the majority of disinfectants, including those containing 70% ethanol, should be able to kill the virus fairly quickly.

Nevertheless, it was found that some bacteria are highly resistant to several commercially available disinfectants. These bacteria are currently still quite rare, and the work of the Veterinary Biotechnology group at the University of the Free State (UFS) aims to prevent the development of more highly resistant bacteria.

The research group in the Department of Microbial, Biochemical and Food Biotechnology is working on disinfectant resistance. They recently published an article, ‘Molecular basis of bacterial disinfectant resistance’.

Group members include: Prof Robert Bragg, professor in the department; Dr Charlotte Boucher, research associate; Samantha Mc Carlie, master’s student and laboratory manager; master’s students, Twyne Skein and Gunther Staats; honours students, Carlo Visser, Bernadette Belter, Boudine van der Walt, Jacky Huang, and Mart-Louise van Zyl; and an NRF intern, Gloria Kankam.

According to Mc Carlie, the work being done on disinfectant resistance is largely attributable to the major issues currently experienced with antibiotic resistance.

“Antibiotic resistance is becoming one of the biggest life-threatening challenges of our time – even overshadowing the current COVID-19 pandemic – as multidrug-resistant infections are becoming increasingly difficult to treat. Bacterial infections that are present in hospitals and agriculture are becoming unresponsive to many of the antibiotics currently in use, marking the start of a post-antibiotic era.”

It is predicted that by 2050, antimicrobial resistance could lead to as many deaths as cancer causes today and could account for between 10 million and 50 million deaths per year.

Lack of proper biosecurity

Mc Carlie says the resistance to antibiotics is spreading rapidly due to a lack of proper biosecurity measures in the food and agricultural industry as well as in the hospital environment, even if the COVID-19 pandemic has gone a long way towards increasing the awareness of hospital staff to the importance of good biosecurity. Millions of rands are lost every year due to multidrug-resistant infections in the dairy and poultry industries of South Africa, and superbugs are present in almost every major hospital in the country.

“Currently, the best viable protection we have against bacteria is biosecurity and disinfectants. Biosecurity relies heavily on the use of disinfectants to control bacterial growth. This makes it only more troubling that disinfectant resistance is emerging at an alarming rate.”

She believes it is important to understand the mechanisms of resistance in order to combat resistance to disinfectants. “Once the mechanisms are identified, possible solutions can be investigated.”

The research group is currently monitoring disinfectant resistance, looking at which microorganisms are resistant to which disinfectants. They take environmental samples and test the levels of disinfectant resistance to observe the development and spread thereof.

Once they have an understanding of the development of disinfectant resistance, the Veterinary Biotechnology group will be able to make recommendations to hospitals and the agricultural industry on how to prevent the development of these resistant microorganisms.

“As we learn more about these highly resistant isolates, it will direct day-to-day treatment of multidrug-resistant infections and hopefully aid in the fight against antibiotic and disinfectant resistance,” says Mc Carlie.

The dangers of over-prescribing

“Resistance to antimicrobials such as antibiotics and disinfectants is a natural occurrence. We did not invent antibiotics, we discovered them, and so bacterial resistance has been around for as long as antibiotics have – as a survival strategy.”

“However, the widespread use of antimicrobials creates selective pressure for those microorganisms that are resistant to the antimicrobial being used. Over-prescribing and improper use of antibiotics has led to widespread antibiotic resistance. We expect the same trend to be seen with disinfectant resistance in the near future,” says Mc Carlie.

She urges the public to take note that disease-causing microorganisms can become resistant to antibiotics and disinfectants if they are not used correctly. A course of antibiotics should always be taken at the correct time and until the last dose. In the same way, disinfectants should be used at the recommended level and not diluted below that level.

These resistant organisms are causing major issues in the agricultural and medical industries, but this effect has not been seen in households yet. As long as disinfectants are used correctly, most will be able to kill the novel coronavirus.

There is, however, a need to establish tests on the efficacy of the massive number of ‘hand sanitisers’ that are now suddenly available.

According to Prof Bragg, existing disinfectants and hand sanitisers have been specifically tested against SARS-CoV-2 and have been found to be effective. He says the undergraduate students in the department will be evaluating a wide range of different hand sanitisers as part of their practical training.

Mc Carlie adds that the excessive use of poor-quality disinfectants as hand sanitisers can result in bacteria developing resistance to these disinfectants. “It is therefore very important that reliable high-quality disinfectants are used as hand sanitisers during this COVID-19 crisis, otherwise we will be replacing one crisis with a potentially even bigger crisis.”

Mc Carlie believes there is a need to start looking at alternatives to control bacterial growth. “Disinfectants are currently the only viable option, and if these microorganisms become resistant to disinfectants as well, we will have nowhere else to turn,” she says.

News Archive

Ford foundation funds higher education redesign
2005-06-23

 

The Ford Foundation has pledged a grant of almost R280 000 for redesigning higher education delivery at three campuses in the Free State.

According to Prof Magda Fourie, Vice-Rector: Academic Planning at the University of the Free State (UFS), the three campuses that will be affected by the strategic reconfiguration of higher education delivery are the Qwaqwa campus at Phuthaditjhaba and the Vista campus of the UFS in Bloemfontein and the Welkom campus of the Central University of Technology (CUT).

Prof Fourie says the three campuses were all affected by the restructuring of higher education, in line with the National Plan for Higher Education.

The Qwaqwa campus of the UFS that was part of the former University of the North was incorporated into the UFS in January 2003.  Likewise the Bloemfontein campus of the former Vista University was incorporated into the UFS in January 2004.

The Welkom campus of the CUT was also part of the former Vista University and was incorporated into the CUT in January 2004.

“These incorporations pose a challenge in that we have to think creatively about the best ways of using these three campuses to service the higher education, training, skills development and human resource needs of the Free State,” Prof Fourie said.

“The grant from the Ford Foundation will primarily be used to draw up strategic funding proposals for the three campuses.  The Qwaqwa campus of the UFS is a priority to us given the poverty and unemployment in a largely rural area of the Free State,” said Prof Fourie.

“A detailed consultation process will be undertaken in the Qwaqwa campus sub-region which will hopefully result in a comprehensive and a coherent suite of higher education activities being established on this campus,” said Prof Fourie.

“It is envisaged that the Qwaqwa campus will become a centre of excellence in the area of rural development.  This vision is based on a focused integration of the core functions of a university – teaching, research, and community service – around the issue of rural development,” said Prof Fourie.

Prof Fourie said that various educational offerings including among others short courses, bridging and foundation programmes, and degrees could be offered, with a particular focus on providing courses of relevance to students from the local rural community and students from elsewhere with an interest in focusing on rural development studies.

She said the redesign of the three affected campuses is being managed as a project of the Free State Higher Education Consortium (FSHEC) consisting of all the higher education institutions operating in the Free State.

“The aim of the project is to establish how the Qwaqwa and Vista campuses of the UFS and the Welkom campus of the CUT can be used effectively to meet regional education and training needs, to serve the strategic priorities of the two higher education institutions and contribute to the sustainable development and poverty alleviation of the region,” she said.

The planning for the Vista campus of the UFS is still in an early stage.  “We are looking at the possibility of developing this campus into a hub of education and training opportunities for Bloemfontein and Free State region.  Further plans will be communicated later in the year,” said Prof Fourie.

Media release

Issued by:  Lacea Loader
   Media Representative
   Tel:  (051) 401-2584
   Cell:  083 645 2454
   E-mail:  loaderl.stg@mail.uovs.ac.za

23 June 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept